已知:四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,給出下列5個(gè)條件:
①AB∥DC;②OA=OC;③AB=DC;④∠BAD=∠DCB;⑤AD∥BC.
(1)從以上5個(gè)條件中任意選取2個(gè)條件,能推出四邊形ABCD是平行四邊形的有(用序號(hào)表示):如①與⑤、______;(直接在橫線上再寫出兩種)
(2)對(duì)由以上5個(gè)條件中任意選取2個(gè)條件,不能推出四邊形ABCD是平行四邊形的,請(qǐng)選取一種情形舉出反例說(shuō)明.

【答案】分析:(1)此題主要是根據(jù)平行四邊形的判定來(lái)進(jìn)行選擇;
(2)③與⑤反例,是因?yàn)闈M足這兩個(gè)條件的可能是等腰梯形.
解答:解:(1)①與②:∵AB∥CD,OA=OC
∴△AOB≌△COD
故AB=CD,四邊形ABCD為平行四邊形.
①與③(根據(jù)一組對(duì)邊平行且相等)
①與④:∵∠BAD=∠DCB
∴AD∥BC
又AB∥DC
根據(jù)兩組對(duì)邊分別平行可推出四邊形ABCD為平行四邊形.
②與⑤:∵AD∥BC
OA=OC
∴△AOD≌△COB
故AD=BC,四邊形ABCD為平行四邊形.
④與⑤:根據(jù)兩組對(duì)邊分別平行可推出四邊形ABCD為平行四邊形;

(2)③與⑤不能推出四邊形ABCD是平行四邊形,反例:等腰梯形.
點(diǎn)評(píng):本題考查了平行四邊形的判定,熟練掌握判定定理是解題的關(guān)鍵.平行四邊形共有五種判定方法,記憶時(shí)要注意技巧;這五種方法中,一種與對(duì)角線有關(guān),一種與對(duì)角有關(guān),其他三種與邊有關(guān).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們給出如下定義:如果四邊形中一對(duì)頂點(diǎn)到另一對(duì)頂點(diǎn)所連對(duì)角線的距離相等,則把這對(duì)頂點(diǎn)叫做這個(gè)四邊形的一對(duì)等高點(diǎn).例如:如圖1,平行四邊形ABCD中,可證點(diǎn)A、C到BD的距離相等,所以點(diǎn)A、C是平行四邊形ABCD的一對(duì)等高點(diǎn),同理可知點(diǎn)B、D也是平行四邊形ABCD的一對(duì)等高點(diǎn).
(1)如圖2,已知平行四邊形ABCD,請(qǐng)你在圖2中畫出一個(gè)只有一對(duì)等高點(diǎn)的四邊形ABCE(要求:畫出必要的輔助線);
(2)已知P是四邊形ABCD對(duì)角線BD上任意一點(diǎn)(不與B、D點(diǎn)重合),請(qǐng)分別探究圖3、圖4中S1,S2,S3,S4四者之間的等量關(guān)系(S1,S2,S3,S4分別表示△ABP,△CBP,△CDP,△ADP的面積):
①如圖3,當(dāng)四邊形ABCD只有一對(duì)等高點(diǎn)A、C時(shí),你得到的一個(gè)結(jié)論是
 
;
②如圖4,當(dāng)四邊形ABCD沒(méi)有等高點(diǎn)時(shí),你得到的一個(gè)結(jié)論是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知,四邊形ABCD是菱形,AC=6,BD=8,求AB的長(zhǎng)和菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、如圖:在平行四邊形ABCD中,∠B=30°,AE⊥BC于點(diǎn)E,AF⊥DC的延長(zhǎng)線于點(diǎn)F,已知平行四邊形ABCD的周長(zhǎng)為40cm,且AE:AF=2:3.求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知在四邊形ABCD中,AC與BD相交于點(diǎn)O,AB⊥AC,CD⊥BD.
(1)求證:△AOD∽△BOC;
(2)若sin∠ABO=
23
,S△AOD=4,求S△BOC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平行四邊形ABCD,E是邊AB的中點(diǎn),聯(lián)結(jié)AC、DE交于點(diǎn)O.記向量
AB
=
a
,
AD
=
b
,則向量
OE
=
1
6
a
-
1
3
b
1
6
a
-
1
3
b
(用向量
a
、
b
表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案