有一列數(shù),記為a1,a2,…an,我們記其前n項和為Sn=a1+a2+….+an,定義Tn=
S1+S2+…+Sn
n
為這列數(shù)的“奧運和”,現(xiàn)如果有99個數(shù)a1+a2+…a99,其“奧運和”為1000,則1,a1,a2,…a99這100個數(shù)的“奧運和”為______.
Tn=
S1+S2+…+Sn
n

對于原數(shù)列a1,a2,…,a99
由分析可得:S1+S2+…+S99=99×1000=99000
對于新數(shù)列1,a1,a2,…,a99
S1=1
S2=1+a1
S3=1+a1+a2

S100=1+a1+a2+…+a99
∴S1+S2+…+S99+S100=1×100+(S1+S2+…+S99)=100+99000=99100
∴T100=
S1+S2+…S99+S100
100
=991
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

有一列數(shù),記為a1,a2,…an,我們記其前n項和為Sn=a1+a2+….+an,定義Tn=
S1+S2+…+Snn
為這列數(shù)的“奧運和”,現(xiàn)如果有99個數(shù)a1+a2+…a99,其“奧運和”為1000,則1,a1,a2,…a99這100個數(shù)的“奧運和”為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

有一列數(shù),記為a1,a2,…an,我們記其前n項和為Sn=a1+a2+….+an,定義Tn=數(shù)學(xué)公式為這列數(shù)的“奧運和”,現(xiàn)如果有99個數(shù)a1+a2+…a99,其“奧運和”為1000,則1,a1,a2,…a99這100個數(shù)的“奧運和”為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年浙江省杭州市外國語學(xué)校初中直升高中選拔數(shù)學(xué)試卷(解析版) 題型:填空題

有一列數(shù),記為a1,a2,…an,我們記其前n項和為Sn=a1+a2+….+an,定義Tn=為這列數(shù)的“奧運和”,現(xiàn)如果有99個數(shù)a1+a2+…a99,其“奧運和”為1000,則1,a1,a2,…a99這100個數(shù)的“奧運和”為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學(xué)試卷(聞堰鎮(zhèn)中 杜國娟)(解析版) 題型:填空題

有一列數(shù),記為a1,a2,…an,我們記其前n項和為Sn=a1+a2+….+an,定義Tn=為這列數(shù)的“奧運和”,現(xiàn)如果有99個數(shù)a1+a2+…a99,其“奧運和”為1000,則1,a1,a2,…a99這100個數(shù)的“奧運和”為   

查看答案和解析>>

同步練習(xí)冊答案