(2013•達(dá)州)已知f(x)=
1
x(x+1)
,則f(1)=
1
1×(1+1)
=
1
1×2
   f(2)=
1
2×(2+1)
=
1
2×3
…,已知f(1)+f(2)+f(3)+…+f(n)=
14
15
,求n的值.
分析:把f(x)裂項(xiàng)為
1
x
-
1
x+1
,然后進(jìn)行計(jì)算即可得解.
解答:解:∵f(x)=
1
x(x+1)
=
1
x
-
1
x+1

∴f(1)+f(2)+f(3)+…+f(n)=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1
=1-
1
n+1
,
∵f(1)+f(2)+f(3)+…+f(n)=
14
15
,
∴1-
1
n+1
=
14
15

解得n=14.
點(diǎn)評(píng):本題考查了分式的加減,把f(x)進(jìn)行裂項(xiàng)是解題的關(guān)鍵,也是本題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•達(dá)州)已知反比例函數(shù)y=
k1
3x
的圖象與一次函數(shù)y=k2x+m的圖象交于A(-1,a)、B(
1
3
,-3)兩點(diǎn),連結(jié)AO.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)設(shè)點(diǎn)C在y軸上,且與點(diǎn)A、O構(gòu)成等腰三角形,請(qǐng)直接寫出點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•達(dá)州)選取二次三項(xiàng)式ax2+bx+c(a≠0)中的兩項(xiàng),配成完全平方式的過(guò)程叫配方.例如
①選取二次項(xiàng)和一次項(xiàng)配方:x2-4x+2=(x-2)2-2;
②選取二次項(xiàng)和常數(shù)項(xiàng)配方:x2-4x+2=(x-
2
)2+(2
2
-4)x
,或x2-4x+2=(x+
2
)2-(4+2
2
)x

③選取一次項(xiàng)和常數(shù)項(xiàng)配方:x2-4x+2=(
2
x-
2
)2-x2

根據(jù)上述材料,解決下面問(wèn)題:
(1)寫出x2-8x+4的兩種不同形式的配方;
(2)已知x2+y2+xy-3y+3=0,求xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(02)(解析版) 題型:填空題

(2013•達(dá)州)已知(x1,y1),(x2,y2)為反比例函數(shù)y=圖象上的點(diǎn),當(dāng)x1<x2<0時(shí),y1<y2,則k的一個(gè)值可為    .(只需寫出符合條件的一個(gè)k的值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年江蘇省蘇州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2013•達(dá)州)已知(x1,y1),(x2,y2)為反比例函數(shù)y=圖象上的點(diǎn),當(dāng)x1<x2<0時(shí),y1<y2,則k的一個(gè)值可為    .(只需寫出符合條件的一個(gè)k的值)

查看答案和解析>>

同步練習(xí)冊(cè)答案