如圖所示,△OAB是邊長(zhǎng)為2+
3
的等邊三角形,其中O是坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸的正方向上,將△OAB折疊,使點(diǎn)B落在邊OA上,記為B′,折痕為EF.
(1)設(shè)OB′的長(zhǎng)為x,△OB′E的周長(zhǎng)為C,求C關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)B′E∥y軸時(shí),求點(diǎn)B′和點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,若拋物線y=-2x2+bx+c的對(duì)稱軸是直線B′E,且經(jīng)過原點(diǎn)O,求b、c的值;
(4)當(dāng)B′在OA上運(yùn)動(dòng)但不與O、A重合時(shí),能否使△EB′F成為直角三角形?若能,請(qǐng)求出點(diǎn)B′的坐標(biāo);若不能,請(qǐng)說明理由.
分析:(1)根據(jù)折疊的性質(zhì)可知BE=B′E,那么三角形OB′E的周長(zhǎng)就等于OB′+OB,已知等邊三角形OBA的邊長(zhǎng),那么就可以表示出c與x的函數(shù)關(guān)系式了.
(2)當(dāng)B′E∥y軸時(shí),EB′⊥x軸,那么本題的關(guān)鍵就是求出直角三角形OB′E的兩條直角邊,可根據(jù)OE+EB′=2+
3
,而我們還可以通過∠EOB′的正弦函數(shù)得出OE,EB′的比例關(guān)系,然后根據(jù)這兩個(gè)關(guān)系可得出OE,B′E的長(zhǎng),進(jìn)而可求出OB′的長(zhǎng).也就得出了點(diǎn)B′和E點(diǎn)的坐標(biāo).
(3)利用拋物線y=-2x2+bx+c的對(duì)稱軸是直線B′E,且經(jīng)過原點(diǎn)O,即可得出圖象對(duì)稱軸是x=1,且經(jīng)過(0,0),分別求出即可;
(4)要想使三角形EB′F是直角三角形,已知∠EB′F=60°,那么只有∠B′EF和∠B′FE為直角,當(dāng)∠B′EF是直角時(shí),那么∠AEF也是直角,那么A,E,B′在一條直線上,B′與O重合,那么與已知矛盾,因此不成立,同理可得出∠B′FE是直角的情況下也不成立,因此三角形EB′F不可能是直角三角形.
解答:解:(1)∵B′和B關(guān)于EF對(duì)稱,
∴B′E=BE,
∴C=OB′+B′E+OE=OB′+BE+OE=x+OB=x+2+
3


(2)當(dāng)B′E∥y軸時(shí),∠EB′O=90°.
∵△OAB為等邊三角形,
∴∠EOB′=60°,OB′=
1
2
EO.
設(shè)OB′=a,則OE=2a.
在Rt△OEB′中,tan∠EOB′=
B′E
B′O
,
∴B′E=B′Otan∠EOB′=
3
a
;
∵B′E+OE=BE+OE=2+
3
,
∴a=1,
∴B′(1,0),E(1,
3
).

(3)∵拋物線y=-2x2+bx+c的對(duì)稱軸是直線B′E,且經(jīng)過原點(diǎn)O,
∴圖象過(0,0)點(diǎn),
∴c=0,
x=-
b
2a
=1,
∴x=-
b
2×(-2)
=1,
∴b=4,
∴b的值為4,c的值為0;

(4)答:不能.
理由如下:
∵∠EB′F=∠B=60°,
∴要使△EB′F成為直角三角形,則90°角只能是∠B′EF或∠B′FE.
假設(shè)∠B′EF=90°,
∵△FB′E與△FBE關(guān)于FE對(duì)稱,
∴∠BEF=∠B′EF=90°,
∴∠BEB′=180°,
則B′、E、B三點(diǎn)在同一直線上,B′與O重合.
這與題設(shè)矛盾.
∴∠B′EF≠90°.
即△EB′F不能為直角三角形.
同理,∠B′FE=90°也不成立.
∴△EB′F不能成為直角三角形.
點(diǎn)評(píng):此題主要考查了折疊的性質(zhì),等邊三角形的性質(zhì)等知識(shí)點(diǎn),根據(jù)折疊的性質(zhì)得出線段和角相等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,△OAB是邊長(zhǎng)為2+
3
的等邊三角形,其中O是坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸的精英家教網(wǎng)正方向上,將△OAB折疊,使點(diǎn)B落在邊OA上,記為B′,折痕為EF.
(1)設(shè)OB′的長(zhǎng)為x,△OB′E的周長(zhǎng)為c,求c關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)B′E∥y軸時(shí),求點(diǎn)B′和點(diǎn)E的坐標(biāo);
(3)當(dāng)B′在OA上運(yùn)動(dòng)但不與O、A重合時(shí),能否使△EB′F成為直角三角形?若能,請(qǐng)求出點(diǎn)B′的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江西省撫州市金溪二中九年級(jí)(上)第三次月考數(shù)學(xué)試卷 (解析版) 題型:解答題

如圖所示,△OAB是邊長(zhǎng)為的等邊三角形,其中O是坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸的正方向上,將△OAB折疊,使點(diǎn)B落在邊OA上,記為B′,折痕為EF.
(1)設(shè)OB′的長(zhǎng)為x,△OB′E的周長(zhǎng)為C,求C關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)B′E∥y軸時(shí),求點(diǎn)B′和點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,若拋物線y=-2x2+bx+c的對(duì)稱軸是直線B′E,且經(jīng)過原點(diǎn)O,求b、c的值;
(4)當(dāng)B′在OA上運(yùn)動(dòng)但不與O、A重合時(shí),能否使△EB′F成為直角三角形?若能,請(qǐng)求出點(diǎn)B′的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年廣東省汕尾市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

如圖所示,△OAB是邊長(zhǎng)為的等邊三角形,其中O是坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸的正方向上,將△OAB折疊,使點(diǎn)B落在邊OA上,記為B′,折痕為EF.
(1)設(shè)OB′的長(zhǎng)為x,△OB′E的周長(zhǎng)為c,求c關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)B′E∥y軸時(shí),求點(diǎn)B′和點(diǎn)E的坐標(biāo);
(3)當(dāng)B′在OA上運(yùn)動(dòng)但不與O、A重合時(shí),能否使△EB′F成為直角三角形?若能,請(qǐng)求出點(diǎn)B′的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省潮州市潮安縣松昌實(shí)驗(yàn)學(xué)校中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖所示,△OAB是邊長(zhǎng)為的等邊三角形,其中O是坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸的正方向上,將△OAB折疊,使點(diǎn)B落在邊OA上,記為B′,折痕為EF.
(1)設(shè)OB′的長(zhǎng)為x,△OB′E的周長(zhǎng)為c,求c關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)B′E∥y軸時(shí),求點(diǎn)B′和點(diǎn)E的坐標(biāo);
(3)當(dāng)B′在OA上運(yùn)動(dòng)但不與O、A重合時(shí),能否使△EB′F成為直角三角形?若能,請(qǐng)求出點(diǎn)B′的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案