精英家教網 > 初中數學 > 題目詳情

已知關于的方程-(k+2)+2k=0

(1)說明:無論k取何值,方程總有實數根;

(2)若方程有兩個相等的實數根,求出方程的根.

 

【答案】

(1)詳見解析;(2)2

【解析】

試題分析:一元二次方程根的情況與判別式△的關系:(1)方程有兩個不相等的實數根;(2)方程有兩個相等的實數根;(3)方程沒有實數根.

(1)由△即可作出判斷;

(2)由方程有兩個相等的實數根可得△,即得,即可求得k的值,從而可以求得方程的根.

試題解析:(1)∵△

∴無論k取何值,方程總有實數根;

(2)由題意得△,解得

則原方程可化為,解得.

考點:1.一元二次方程根的情況與判別式;2.解一元二次方程

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知關于的方程x2+kx-3=0有一根為-3,則另一根為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

已知關于的方程
x+a
x-3
=-1
有正根,則實數a的取值范圍是( 。
A、a<0且a≠-3
B、a>0
C、a<-3
D、a<3且a≠-3

查看答案和解析>>

科目:初中數學 來源: 題型:

已知關于的方程x2+ax+b=0(b≠0)與x2+cx+d=0都有實數根,若這兩個方程有且只有一個公共根,且ab=cd,則稱它們互為“同根輪換方程”.如x2-x-6=0與x2-2x-3=0互為“同根輪換方程”.
(1)若關于x的方程x2+4x+m=0與x2-6x+n=0互為“同根輪換方程”,求m的值;
(2)若p是關于x的方程x2+ax+b=0(b≠0)的實數根,q是關于x的方程x2+2ax+
1
2
b=0
的實數根,當p、q分別取何值時,方程x2+ax+b=0(b≠0)與x2+2ax+
1
2
b=0
互為“同根輪換方程”,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2011屆河南省周口市初三下學期第二十八章二次函數圖像與性質檢測題 題型:解答題

已知關于的方程.

(1)求證:方程總有兩個實數根;
(2)若方程有一個根大于4且小于8,求m的取值范圍;
(3)設拋物線軸交于點M,若拋物線與x軸的一個交點關于直線的對稱點恰好是點M,求的值.

查看答案和解析>>

科目:初中數學 來源:2012年人教版初中數學九年級上22.1一元二次方程練習卷(解析版) 題型:解答題

已知關于的方程

⑴  若方程有兩個相等的實數根,求的值,并求出此時方程的根(6分)

⑵  是否存在正數,使方程的兩個實數根的平方和等于224 ?若存在,求出滿足條件的的值; 若不存在,請說明理由。(6分)

 

查看答案和解析>>

同步練習冊答案