【題目】如圖,所有正三角形的一邊平行于x軸,一頂點(diǎn)在y軸上.從內(nèi)到外,它們的邊長(zhǎng)依次為2,4,6,8,…,頂點(diǎn)依次用A1、A2、A3、A4…表示,其中A1A2與x軸、底邊A1A2與A4A5、A4A5與A7A8、…均相距一個(gè)單位,則頂點(diǎn)A3的坐標(biāo)是 , A92的坐標(biāo)是 .
【答案】(0, ﹣1);(31,﹣31)
【解析】解:∵△A1A2A3的邊長(zhǎng)為2,
∴△A1A2A3的高線為2× = ,
∵A1A2與x軸相距1個(gè)單位,
∴A3O= ﹣1,
∴A3的坐標(biāo)是(0, ﹣1);
∵92÷3=30…2,
∴A92是第31個(gè)等邊三角形的第2個(gè)頂點(diǎn),
第31個(gè)等邊三角形邊長(zhǎng)為2×31=62,
∴點(diǎn)A92的橫坐標(biāo)為 ×62=31,
∵邊A1A2與A4A5、A4A5與A7A8、…均相距一個(gè)單位,
∴點(diǎn)A92的縱坐標(biāo)為﹣31,
∴點(diǎn)A92的坐標(biāo)為(31,﹣31).
故答案為:(0, ﹣1);(31,﹣31).
根據(jù)等邊三角形的性質(zhì)求出第一個(gè)三角形的高,然后求出A3O即可得解;
先根據(jù)每一個(gè)三角形有三個(gè)頂點(diǎn)確定出A92所在的三角形,再求出相應(yīng)的三角形的邊長(zhǎng)以及A92的縱坐標(biāo)的長(zhǎng)度,即可得解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)要求計(jì)算下列問(wèn)題:
(1)計(jì)算(﹣ )﹣2﹣2cos45°+( )0+ +(﹣1)2017
(2)先化簡(jiǎn),再求值 ,其中a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程(組)解應(yīng)用題 某服裝店用4500元購(gòu)進(jìn)一批襯衫,很快售完,服裝店老板又用2100元購(gòu)進(jìn)第二批該款式的襯衫,但每件進(jìn)價(jià)比第一批襯衫的每件進(jìn)價(jià)少了10元,且進(jìn)貨量是第一次進(jìn)貨量的一半,求第一批購(gòu)進(jìn)這種襯衫每件的進(jìn)價(jià)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸的正半軸上,且OA=3,OC=2,將矩形OABC向上平移4個(gè)單位得到矩形O1A1B1C1 .
(1)若反比例函數(shù)y= 和y= 的圖象分別經(jīng)過(guò)點(diǎn)B、B1 , 求k1和k2的值;
(2)將矩形O1A1B1C1向左平移得到O2A2B2C2 , 當(dāng)點(diǎn)O2、B2在反比例函數(shù)y= 的圖象上時(shí),求平移的距離和k3的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某水上樂(lè)園有一個(gè)滑梯AB,高度AC為6米,傾斜角為60°,暑期將至,為改善滑梯AB的安全性能,把傾斜角由60°減至30°
(1)求調(diào)整后的滑梯AD的長(zhǎng)度;
(2)調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數(shù)據(jù): ≈1.41, , ≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料,先完成閱讀填空,再按要求答題:
(1)閱讀填空
sin30°= ,cos30°= ,則sin230°+cos230°= ;①
sin45°= ,cos45°= ,則sin245°+cos245°= ;②
sin60°= ,cos60°= ,則sin260°+cos260°= .③
…
觀察上述等式,猜想:對(duì)任意銳角A,都有sin2A+cos2A= .④
(2)如圖,在銳角三角形ABC中,利用三角函數(shù)的定義及勾股定理對(duì)∠A證明你的猜想;
(3)已知:∠A為銳角(cosA>0)且sinA= ,求cosA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料,先完成閱讀填空,再按要求答題:
(1)閱讀填空
sin30°= ,cos30°= ,則sin230°+cos230°= ;①
sin45°= ,cos45°= ,則sin245°+cos245°= ;②
sin60°= ,cos60°= ,則sin260°+cos260°= .③
…
觀察上述等式,猜想:對(duì)任意銳角A,都有sin2A+cos2A= .④
(2)如圖,在銳角三角形ABC中,利用三角函數(shù)的定義及勾股定理對(duì)∠A證明你的猜想;
(3)已知:∠A為銳角(cosA>0)且sinA= ,求cosA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,直線y=kx+n(k≠0)經(jīng)過(guò)B,C兩點(diǎn),已知A(1,0),C(0,3),且BC=5.
(1)分別求直線BC和拋物線的解析式(關(guān)系式);
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得以B,C,P三點(diǎn)為頂點(diǎn)的三角形是直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的方程x2+2mx+m2+3m﹣2=0有兩個(gè)實(shí)數(shù)根x1、x2 , 則x1(x2+x1)+x22的最小值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com