【題目】如圖,正方形ABCD中,E為CD邊上一點,F(xiàn)為BC延長線上一點,CE=CF.若∠BEC=80°,則∠EFD的度數(shù)為( )
A.20°
B.25°
C.35°
D.40°
【答案】C
【解析】解:∵四邊形ABCD是正方形,
∴BC=CD,∠BCD=∠DCF=90°,
∵在△BCE和△DCF中
,
∴△BCE≌△DCF,
∴∠DFC=∠BEC=80°,
∵∠DCF=90°,CE=CF,
∴∠CFE=∠CEF=45°,
∴∠EFD=80°﹣45°=35°.
故選C.
【考點精析】解答此題的關(guān)鍵在于理解等腰直角三角形的相關(guān)知識,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°,以及對正方形的性質(zhì)的理解,了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,寫出△ABC各頂點的坐標以及△ABC關(guān)于x對稱的△A1B1C1的各頂點坐標,并畫出△ABC關(guān)于y對稱的△A2B2C2.并求△ABC的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題
(1)如圖,已知△ABC中,AD⊥BC于D, AE為∠BAC的平分線,∠B=50°,∠C=70°,求∠DAE的度數(shù).
(2)已知在△ABC中,AD⊥BC于點D,AE平分∠BAC(∠C>∠B).求證:∠DAE= (∠C-∠B).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正在修建的黔張常鐵路,橫跨渝、鄂、湘三省,起于重慶市黔江區(qū)黔江站,止于常德市武陵區(qū)常德站.鐵路規(guī)劃線路總長340公里,工程估算金額375000000000元.將數(shù)據(jù)37500000000用科學記數(shù)法表示為( )
A.0.375×1011
B.3.75×1011
C.3.75×1010
D.375×108
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,△ABC的頂點A、B、C在小正方形的頂點上,將△ABC向下平移4個單位、再向右平移3個單位得到△A1B1C1
(1)在網(wǎng)格中畫出△A1B1C1;
(2)計算線段AC在變換到A1C1的過程中掃過區(qū)域的面積(重疊部分不重復計算).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com