已知:如圖,在△ABC中,點(diǎn)D,E分別在AB,AC上,連接DC,BE,若∠BDE+∠BCE=180°.
(1)寫出圖中兩對相似三角形(注意:不得添加字母和線);
(2)請你在所找出的相似三角形中選取一對,給予證明.

解:(1)①△FDB∽△FCE; ②△ABC∽△AED.

(2)△FDB∽△FCE.
證明:∵∠BDE+∠BCE=180°,∠BCE+∠ECF=180°,
∴∠BDE=∠ECF,
又∵∠F=∠F,
∴△FDB∽△FCE(有兩對角對應(yīng)相等的兩個(gè)三角形相似).
分析:(1)分別求證△FDB∽△FCE和△ABC∽△AED即可;
(2)根據(jù)∠BDE+∠BCE=180°,∠BCE+∠ECF=180°即可求證∠BDE=∠ECF,進(jìn)而可以證明△FDB∽△FCE即可解題.
點(diǎn)評:本題考查了相似三角形的判定,考查了相似三角形對應(yīng)角相等的性質(zhì),本題中求證∠BDE=∠ECF是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過A,D兩點(diǎn)作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊答案