如圖,在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A沿AB向點(diǎn)B以1cm/s的速度移動(dòng),同時(shí),點(diǎn)Q從點(diǎn)B沿邊BC向點(diǎn)C以2cm/s的速度移動(dòng),點(diǎn)P、Q分別到達(dá)B、C兩點(diǎn)就停止運(yùn)動(dòng)、設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)設(shè)△BPQ的面積為S,求S與t之間的函數(shù)關(guān)系式,并且指出t的取值范圍;
(2)幾秒后△PBQ的面積等于8cm2?
(3)當(dāng)t為何值時(shí),△DPQ是等腰三角形?

【答案】分析:(1)用含有t的式子分別表示PB,BQ的長(zhǎng),再根據(jù)三角形的面積公式表示△BPQ的面積即可;
(2)當(dāng)S=8,代入第一問(wèn)得到的函數(shù)式即可求解;
(3)題中沒(méi)有指明哪個(gè)邊與哪邊相等,故應(yīng)該分三種情況進(jìn)行分析,分別是DP=DQ,DP=PQ,PQ=DQ.從而求得所需的時(shí)間.
解答:解:(1)設(shè)運(yùn)動(dòng)的時(shí)間為t(秒)
∵在矩形ABCD中,AB=6cm,BC=12cm
∴PB=6-t,BQ=2t
∴S△BPQ=×PB×BQ=t(6-t)(0<t<6).

(2)∵S△BPQ=8
∴t(6-t)=8
∴t=2或t=4
∴當(dāng)t=2或t=4后△PBQ的面積等于8cm2

(3)①當(dāng)DP=DQ時(shí),
=
解得,t1=8+2(舍去)
t2=8-2;
②當(dāng)DP=PQ時(shí),
=
解得,t1=(舍去)
t2=;
③當(dāng)DQ=PQ時(shí),
=
解得,t1=-18-6(舍去)
t2=-18+6;
所以當(dāng)t為8-2或-18+6時(shí),△DPQ是等腰三角形.
點(diǎn)評(píng):此題主要考查學(xué)生以等腰三角形的判定的理解及運(yùn)用能力,及分類討論思想的掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C運(yùn)動(dòng),設(shè)經(jīng)過(guò)的時(shí)間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以O(shè)A的長(zhǎng)為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D路線向點(diǎn)D勻速運(yùn)動(dòng),到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿 D→C→B→A路線向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后停止.若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動(dòng)過(guò)程中,Q點(diǎn)停留了1s,圖②是P、Q兩點(diǎn)在折線AB-BC-CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象.
(1)請(qǐng)解釋圖中點(diǎn)H的實(shí)際意義?
(2)求P、Q兩點(diǎn)的運(yùn)動(dòng)速度;
(3)將圖②補(bǔ)充完整;
(4)當(dāng)時(shí)間t為何值時(shí),△PCQ為等腰三角形?請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動(dòng)點(diǎn)(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點(diǎn)F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時(shí),y的值最大,最大值是多少?
(3)若設(shè)線段AB的長(zhǎng)為m,上述其它條件不變,m為何值時(shí),函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊(cè)答案