觀察算式:
1+3=
(1+3)×2
2
,1+3+5=
(1+5)×3
2
,1+3+5+7=
(1+7)×4
2

按規(guī)律填空:
(1)1+3+5+7+9+…+99=
(1+99)×50
2
=2500
(1+99)×50
2
=2500

(2)1+3+5+7+9+…+(2n-1)=
[1+(2n-1)]×n
2
=n2
[1+(2n-1)]×n
2
=n2
分析:觀察所給的算式都是計算從1開始的連續(xù)奇數(shù)的和,它們的和為把首尾兩個奇數(shù)相加乘以奇數(shù)的個數(shù)除以2,利用此規(guī)律分別進(jìn)行計算即可.
解答:解:(1)1+3+5+7+9+…+99=
(1+99)×50
2
=2500;

(2)1+3+5+7+9+…+(2n-1)=
[1+(2n-1)]×n
2
=n2
故答案為
(1+99)×50
2
=2500
;
[1+(2n-1)]×n
2
=n2
點評:本題考查了規(guī)律型:數(shù)字的變化類:通過從一些特殊的數(shù)字變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

觀察算式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,并以此規(guī)律計算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2007×2008

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

(1)按規(guī)律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
 

(2)若n為正整數(shù),化簡:
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+
1
(n+3)(n+4)
+…+
1
(n+99)(n+100)
,并寫出求解過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察算式:
1
1×2
=1
-
1
2
=
1
2
,
1
1×2
+
1
2×3
=1
-
1
2
+
1
2
-
1
3
=
2
3
,
1
1×2
+
1
2×3
+
1
3×4
=1
-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4
;

(1)按規(guī)律填空:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100
;
③如果n為正整數(shù),那么
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n×(n+1)
=
n
n+1
n
n+1
;
(2)計算(由此拓展寫出具體過程):
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
;
②1-
1
2
-
1
6
-
1
12
-…-
1
9900

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

按規(guī)律填空 
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
5
6
5
6

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100

若n為正整數(shù),試求:
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+
1
(n+3)(n+4)
+…+
1
(n+99)(n+100)
的值,并寫出求值過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察算式:
1
1×2
=1-
1
2
=
1
2
,
1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

按規(guī)律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100
;
如果n為正整數(shù),那么
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n(n+1)
=
n
n+1
n
n+1

由此拓展寫出具體過程,
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101

查看答案和解析>>

同步練習(xí)冊答案