【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為( 。

A. ,0) B. (2,0) C. ,0) D. (3,0)

【答案】A

【解析】分析:過點BBD⊥x軸于點D,易證△ACO≌△BCD(AAS),從而可求出B的坐標,進而可求出反比例函數(shù)的解析式,根據(jù)解析式與A的坐標即可得知平移的單位長度,從而求出C的對應點.

詳解:

過點BBD⊥x軸于點D,如圖所示:


∵∠ACO+∠BCD=90°,
∠OAC+∠ACO=90°,
∴∠OAC=∠BCD,
在△ACO與△BCD中,

∴△ACO≌△BCD(AAS)
∴OC=BD,OA=CD,
∵A(0,2),C(1,0)
∴OD=3,BD=1,
∴B(3,1),
∴設反比例函數(shù)的解析式為y=

B(3,1)代入y=

∴k=3,
∴y=,

∴把y=2代入y=,

∴x=,

當頂點A恰好落在該雙曲線上時,
此時點A移動了個單位長度,
∴C也移動了個單位長度,
此時點C的對應點C′的坐標為(,0)
故選:A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在某電視臺的一檔選秀節(jié)目中,有三位評委,每位評委在選手完成才藝表演后,出示“通過”(用√表示)或“淘汰”(用×表示)的評定結(jié)果,節(jié)目組規(guī)定:每位選手至少獲得兩位評委的“通過”才能晉級.

(1)請用樹狀圖列舉出選手A獲得三位評委評定的各種可能的結(jié)果;

(2)求選手A晉級的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:

;;;⑥當時,的增大而增大.

其中正確的說法有________(寫出正確說法的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在矩形中,已知,,點沿邊從點開始向點以每秒個單位長度的速度運動;點沿邊從點開始向點以每秒個單位長度的速度運動.如果,同時出發(fā),用秒表示運動的時間.

請解答下列問題:

(1)當為何值時,是等腰直角三角形?

(2)當t為何值時,以點,,為頂點的三角形與相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知拋物線y=﹣xx3)(0≤x≤3)在x軸上方的部分,記作C1,它與x軸交于點O,A1,將C1繞點A1旋轉(zhuǎn)180°C2,C2x軸交于另一點A2.請繼續(xù)操作并探究:將C2繞點A2旋轉(zhuǎn)180°C3,與x軸交于另一點A3;將C3繞點A3旋轉(zhuǎn)180°C4,與x軸交于另一點A4,這樣依次得到x軸上的點A1,A2A3,,An,,及拋物線C1C2,n,n的頂點坐標為_____n為正整數(shù),用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了改善辦公條件,計劃從廠家購買兩種型號電腦.已知每臺種型號電腦價格比每臺種型號電腦價格多0.1萬元,且用10萬元購買種型號電腦的數(shù)量與用8萬購買種型號電腦的數(shù)量相同.

(1)兩種型號電腦每臺價格各為多少萬元?

(2)學校預計用不多于9.2萬元的資金購進這兩種電腦共20臺,其中種型號電腦至少要購進10臺,請問有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC5EBC邊上的一個動點,DFAE,垂足為點F,連結(jié)CF

1)若AEBC

①求證:ABE≌△DFA;②求四邊形CDFE的周長;③求tanFCE的值;

2)探究:當BE為何值時,CDF是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某景區(qū)每日利潤y1(元)與當天游客人數(shù)x(人)的函數(shù)圖像.為了吸引游客,該景區(qū)決定改革,改革后每張票價減少20元,運營成本減少800元.設改革后該景區(qū)每日利潤為y2(元).(注:每日利潤=票價收入-運營成本)

1)解釋點A的實際意義:______.

2)分別求出y1、y2關(guān)于x的函數(shù)表達式;

3)當游客人數(shù)為多少人時,改革前的日利潤與改革后的日利潤相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自我省深化課程改革以來,某校開設了:A.利用影長求物體高度,B.制作視力表,C.設計遮陽棚,D.制作中心對稱圖形,四類數(shù)學實踐活動課.規(guī)定每名學生必選且只能選修一類實踐活動課,學校對學生選修實踐活動課的情況進行抽樣調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)圖中信息解決下列問題:

(1)本次共調(diào)查名學生,扇形統(tǒng)計圖中B所對應的扇形的圓心角為度;

(2)補全條形統(tǒng)計圖;

(3)選修D類數(shù)學實踐活動的學生中有2名女生和2名男生表現(xiàn)出色,現(xiàn)從4人中隨機抽取2人做校報設計,請用列表或畫樹狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.

查看答案和解析>>

同步練習冊答案