如圖,等邊△ABC中,AO是∠BAC的角平分線,D為AO上一點,以CD為一邊且在CD下方作等邊△CDE,連接BE.

(1)求證:△ACD≌△BCE;

(2)延長BE至Q,P為BQ上一點,連接CP、CQ使CP=CQ=5,若BC=8時,求PQ的長.

解:(1)∵△ABC與△DCE是等邊三角形,

∴AC=BC,DC=EC,∠ACB=∠DCE=60°,

∴∠ACD+∠DCB=∠ECB+∠DCB=60°,

∴∠ACD=∠BCE,

∴△ACD≌△BCE(SAS);

(2)過點C作CH⊥BQ于H,

∵△ABC是等邊三角形,AO是角平分線,

∴∠DAC=30°,

∵△ACD≌△BCE,

∴∠QBC=∠DAC=30°,

∴CH=BC=×8=4,

∵PC=CQ=5,CH=4,

∴PH=QH=3,

∴PQ=6.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

30、如圖,等邊△ABC中,E,D在AB,AC上,且EB=AD,BD與EC交于點F,則∠DFC=
60
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等邊△ABC中,AD是∠BAC的角平分線,E為AD上一點,以BE為一邊且在BE下方作等邊△BEF,連接CF.
(1)求證:AE=CF;
(2)G為CF延長線上一點,連接BG.若BG=5,BC=8,求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等邊△ABC中,D、E、F分別是各邊上的一點,且AD=BE=CF.
求證:△DEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等邊△ABC中,D是BC上一點,以AD為邊作等腰△ADE,使AD=AE,∠DAE=80°,DE交AC于點F,∠BAD=15°,求∠FDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等邊△ABC中,AD=CE,BD和AE相交于F,BG⊥AE垂足為G,求∠FBG的度數(shù).

查看答案和解析>>

同步練習冊答案