(2010•揚(yáng)州一模)如圖,點(diǎn)M(4,0),以點(diǎn)M為圓心、2為半徑的圓與x軸交于點(diǎn)A、B,已知拋物線過點(diǎn)A和B,與y軸交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo),并畫出拋物線的大致圖象;
(2)求出拋物線的頂點(diǎn)D的坐標(biāo),并確定與圓M的位置關(guān)系;
(3)點(diǎn)Q(8,m)在拋物線上,點(diǎn)P為此拋物線對(duì)稱軸上一個(gè)動(dòng)點(diǎn),求PQ+PB的最小值.
【答案】分析:(1)根據(jù)⊙M圓心的坐標(biāo)和半徑的長(zhǎng),可表示出A、B兩點(diǎn)的坐標(biāo),代入拋物線的解析式中,即可求得待定系數(shù)的值,從而確定該拋物線的解析式,也就能得到點(diǎn)C的坐標(biāo).
(2)將拋物線的解析式化為頂點(diǎn)坐標(biāo)式,即可求得點(diǎn)D的坐標(biāo);由于拋物線和圓都是軸對(duì)稱圖形,那么點(diǎn)D、M都在拋物線的對(duì)稱軸上,可根據(jù)圓的半徑來判定點(diǎn)D和圓M的位置關(guān)系.
(3)根據(jù)拋物線的解析式,即可確定點(diǎn)Q的坐標(biāo);由于A、B關(guān)于拋物線對(duì)稱軸對(duì)稱,那么連接QA,直線QA與拋物線對(duì)稱軸的交點(diǎn)即為所求的點(diǎn)P,此時(shí)PQ+PB的最小值為QA的長(zhǎng),根據(jù)Q、A的坐標(biāo)即可求得QA的長(zhǎng),由此得解.
解答:解:(1)由已知,得A(2,0),B(6,0),
∵拋物線過點(diǎn)A和B,則:
,
解得;
則拋物線的解析式為
故C(0,2).(3分)
(說明:拋物線的大致圖象要過點(diǎn)A、B、C,其開口方向、頂點(diǎn)和對(duì)稱軸相對(duì)準(zhǔn)確)(4分)

(2)由(1)得:=(x-4)2-
故D(4,-),D點(diǎn)在圓內(nèi).(7分)

(3)如圖,拋物線對(duì)稱軸l是x=4;
∵Q(8,m)拋物線上,
∴m=2;
過點(diǎn)Q作QK⊥x軸于點(diǎn)K,則K(8,0),QK=2,AK=6,
∴AQ=;(10分)
又∵B(6,0)與A(2,0)關(guān)于對(duì)稱軸l對(duì)稱,
∴PQ+PB的最小值=AQ=.(12分)
點(diǎn)評(píng):此題主要考查了二次函數(shù)解析式的確定、頂點(diǎn)坐標(biāo)的求法以及平面展開-最短路徑等相關(guān)知識(shí),難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2010•揚(yáng)州二模)在中央電視臺(tái)第2套《購(gòu)物街》欄目中,有一個(gè)精彩刺激的游戲--幸運(yùn)大轉(zhuǎn)盤,其規(guī)則如下:
①游戲工具是一個(gè)可繞軸心自由轉(zhuǎn)動(dòng)的圓形轉(zhuǎn)盤,轉(zhuǎn)盤按圓心角均勻劃分為20等分,并在其邊緣標(biāo)記5、10、15、…、100共20個(gè)5的整數(shù)倍數(shù),游戲時(shí),選手可旋轉(zhuǎn)轉(zhuǎn)盤,待轉(zhuǎn)盤停止時(shí),指針?biāo)傅臄?shù)即為本次游戲的得分;
②每個(gè)選手在旋轉(zhuǎn)一次轉(zhuǎn)盤后可視得分情況選擇是否再旋轉(zhuǎn)轉(zhuǎn)盤一次,若只旋轉(zhuǎn)一次,則以該次得分為本輪游戲的得分,若旋轉(zhuǎn)兩次則以兩次得分之和為本輪游戲的得分;
③若某選手游戲得分超過100分,則稱為“爆掉”,該選手本輪游戲裁定為“輸”,在得分不超過100分的情況下,分?jǐn)?shù)高者裁定為“贏”;
④遇到相同得分的情況,相同得分的選手重新游戲,直到分出輸贏.
現(xiàn)有甲、乙兩位選手進(jìn)行游戲,請(qǐng)解答以下問題:
(1)甲已旋轉(zhuǎn)轉(zhuǎn)盤一次,得分65分,他選擇再旋轉(zhuǎn)一次,求他本輪游戲不被“爆掉”的概率.
(2)若甲一輪游戲最終得分為90分,乙第一次旋轉(zhuǎn)轉(zhuǎn)盤得分為85分,則乙還有可能贏嗎贏的概率是多少
(3)若甲、乙兩人交替進(jìn)行游戲,現(xiàn)各旋轉(zhuǎn)一次后甲得85分,乙得65分,你認(rèn)為甲是否應(yīng)選擇旋轉(zhuǎn)第二次說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省揚(yáng)州市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•揚(yáng)州一模)如圖,∠ABM為直角,點(diǎn)C為線段BA的中點(diǎn),點(diǎn)D是射線BM上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B重合),連接AD,作BE⊥AD,垂足為E,連接CE,過點(diǎn)E作EF⊥CE,交BD于F.
(1)求證:BF=FD;
(2)點(diǎn)D在運(yùn)動(dòng)過程中能否使得四邊形ACFE為平行四邊形?如不能,請(qǐng)說明理由;如能,求出此時(shí)∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省南京市浦口區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•揚(yáng)州二模)在中央電視臺(tái)第2套《購(gòu)物街》欄目中,有一個(gè)精彩刺激的游戲--幸運(yùn)大轉(zhuǎn)盤,其規(guī)則如下:
①游戲工具是一個(gè)可繞軸心自由轉(zhuǎn)動(dòng)的圓形轉(zhuǎn)盤,轉(zhuǎn)盤按圓心角均勻劃分為20等分,并在其邊緣標(biāo)記5、10、15、…、100共20個(gè)5的整數(shù)倍數(shù),游戲時(shí),選手可旋轉(zhuǎn)轉(zhuǎn)盤,待轉(zhuǎn)盤停止時(shí),指針?biāo)傅臄?shù)即為本次游戲的得分;
②每個(gè)選手在旋轉(zhuǎn)一次轉(zhuǎn)盤后可視得分情況選擇是否再旋轉(zhuǎn)轉(zhuǎn)盤一次,若只旋轉(zhuǎn)一次,則以該次得分為本輪游戲的得分,若旋轉(zhuǎn)兩次則以兩次得分之和為本輪游戲的得分;
③若某選手游戲得分超過100分,則稱為“爆掉”,該選手本輪游戲裁定為“輸”,在得分不超過100分的情況下,分?jǐn)?shù)高者裁定為“贏”;
④遇到相同得分的情況,相同得分的選手重新游戲,直到分出輸贏.
現(xiàn)有甲、乙兩位選手進(jìn)行游戲,請(qǐng)解答以下問題:
(1)甲已旋轉(zhuǎn)轉(zhuǎn)盤一次,得分65分,他選擇再旋轉(zhuǎn)一次,求他本輪游戲不被“爆掉”的概率.
(2)若甲一輪游戲最終得分為90分,乙第一次旋轉(zhuǎn)轉(zhuǎn)盤得分為85分,則乙還有可能贏嗎贏的概率是多少
(3)若甲、乙兩人交替進(jìn)行游戲,現(xiàn)各旋轉(zhuǎn)一次后甲得85分,乙得65分,你認(rèn)為甲是否應(yīng)選擇旋轉(zhuǎn)第二次說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年河南省中考數(shù)學(xué)模擬試卷(05)(解析版) 題型:解答題

(2010•揚(yáng)州二模)在中央電視臺(tái)第2套《購(gòu)物街》欄目中,有一個(gè)精彩刺激的游戲--幸運(yùn)大轉(zhuǎn)盤,其規(guī)則如下:
①游戲工具是一個(gè)可繞軸心自由轉(zhuǎn)動(dòng)的圓形轉(zhuǎn)盤,轉(zhuǎn)盤按圓心角均勻劃分為20等分,并在其邊緣標(biāo)記5、10、15、…、100共20個(gè)5的整數(shù)倍數(shù),游戲時(shí),選手可旋轉(zhuǎn)轉(zhuǎn)盤,待轉(zhuǎn)盤停止時(shí),指針?biāo)傅臄?shù)即為本次游戲的得分;
②每個(gè)選手在旋轉(zhuǎn)一次轉(zhuǎn)盤后可視得分情況選擇是否再旋轉(zhuǎn)轉(zhuǎn)盤一次,若只旋轉(zhuǎn)一次,則以該次得分為本輪游戲的得分,若旋轉(zhuǎn)兩次則以兩次得分之和為本輪游戲的得分;
③若某選手游戲得分超過100分,則稱為“爆掉”,該選手本輪游戲裁定為“輸”,在得分不超過100分的情況下,分?jǐn)?shù)高者裁定為“贏”;
④遇到相同得分的情況,相同得分的選手重新游戲,直到分出輸贏.
現(xiàn)有甲、乙兩位選手進(jìn)行游戲,請(qǐng)解答以下問題:
(1)甲已旋轉(zhuǎn)轉(zhuǎn)盤一次,得分65分,他選擇再旋轉(zhuǎn)一次,求他本輪游戲不被“爆掉”的概率.
(2)若甲一輪游戲最終得分為90分,乙第一次旋轉(zhuǎn)轉(zhuǎn)盤得分為85分,則乙還有可能贏嗎贏的概率是多少
(3)若甲、乙兩人交替進(jìn)行游戲,現(xiàn)各旋轉(zhuǎn)一次后甲得85分,乙得65分,你認(rèn)為甲是否應(yīng)選擇旋轉(zhuǎn)第二次說明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案