如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,將△ABC繞點C順時針旋轉(zhuǎn)90°,使A落在BC邊的A1處,△A1B1C向左平移,使A1落在AB邊的A2上,在整個過程中,A點移動的路程為   
【答案】分析:連A1A2,先根據(jù)勾股定理計算出BC===4,由于△ABC繞點C順時針旋轉(zhuǎn)90°,使A落在BC邊的A1處,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠ACA1=90°,CA1=CA=3,然后利用弧長公式計算出弧AA1的長==π,又根據(jù)相似三角形的判定由A1A2∥BC,可得△BA1A2∽△BAC,則A1A2:AC=BA1:BC,即A1A2:3=1:4,可得到A1A2=,于是在整個過程中,A點移動的路程為π+
解答:解:連A1A2,如圖,
∵∠ACB=90°,AB=5,AC=3,
∴BC===4,
∵△ABC繞點C順時針旋轉(zhuǎn)90°,使A落在BC邊的A1處,
∴∠ACA1=90°,CA1=CA=3,
∴弧AA1的長==π,
∴BA1=BC-CA1=4-3=1,
∵A1A2∥BC,
∴△BA1A2∽△BAC,
∴A1A2:AC=BA1:BC,即A1A2:3=1:4,
∴A1A2=,
∴在整個過程中,A點移動的路程=π+
故答案為:π+
點評:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等,即對應(yīng)角相等,對應(yīng)線段相等,對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了勾股定理、弧長公式以及相似三角形的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
(1)當(dāng)點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案