(2011•舟山)已知直線y=kx+3(k<0)分別交x軸、y軸于A、B兩點(diǎn),線段OA上有一動點(diǎn)P由原點(diǎn)O向點(diǎn)A運(yùn)動,速度為每秒1個單位長度,過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,設(shè)運(yùn)動時(shí)間為t秒.
(1)當(dāng)k=﹣1時(shí),線段OA上另有一動點(diǎn)Q由點(diǎn)A向點(diǎn)O運(yùn)動,它與點(diǎn)P以相同速度同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(如圖1).
①直接寫出t=1秒時(shí)C、Q兩點(diǎn)的坐標(biāo);
②若以Q、C、A為頂點(diǎn)的三角形與△AOB相似,求t的值.
(2)當(dāng)時(shí),設(shè)以C為頂點(diǎn)的拋物線y=(x+m)2+n與直線AB的另一交點(diǎn)為D(如圖2),
①求CD的長;
②設(shè)△COD的OC邊上的高為h,當(dāng)t為何值時(shí),h的值最大?
解:(1)①C(1,2),Q(2,0)
②由題意得:P(t,0),C(t,﹣t+3),Q(3﹣t,0)
分兩種情況討論:
情形一:當(dāng)△AQC∽△AOB時(shí),∠AQC=∠AOB=90°,∴CQ⊥OA,∵CP⊥OA,∴點(diǎn)P與點(diǎn)Q重合,OQ=OP,即3﹣t=t,∴t=1.5
情形二:當(dāng)△AQC∽△AOB時(shí),∠ACQ=∠AOB=90°,∵OA=OB=3∴△AOB是等腰直角三角形∴△ACQ也是等腰直角三角形∵CP⊥OA∴AQ=2CP,即t=2(﹣t+3)∴t=2∴滿足條件的t的值是1.5秒或2秒.
(2)①由題意得:C(t,﹣)
∴以C為頂點(diǎn)的拋物線解析式是y=,由,
解得.
過點(diǎn)D作DE⊥CP于點(diǎn)E,則∠DEC=∠AOB=90°
∵DE∥OA∴∠EDC=∠OAB
∴△DEC∽△AOB∴∵AO=4,AB=5,DE=∴CD=
②∵,CD邊上的高=,∴,∴S△COD為定值.
要使OC邊上的高h(yuǎn)的值最大,只要OC最短,因?yàn)楫?dāng)OC⊥AB時(shí)OC最短,此時(shí)OC的長為,∠BCO=90°
∵∠AOB=90°∴∠COP=90°﹣∠BOC=∠OBA
又∵CP⊥OA∴Rt△PCO∽Rt△OAB
∴,OP=,即t=
∴.
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(四川成都卷)數(shù)學(xué)解析版 題型:解答題
(2011•舟山)如圖,已知直線y=﹣2x經(jīng)過點(diǎn)P(﹣2,a),點(diǎn)P關(guān)于y軸的對稱點(diǎn)P′在反比例函數(shù)(k≠0)的圖象上.
(1)求a的值;
(2)直接寫出點(diǎn)P′的坐標(biāo);
(3)求反比例函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com