【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點(diǎn)A在x軸的正半軸上.頂點(diǎn)B的坐標(biāo)為(3, ),點(diǎn)C的坐標(biāo)為( ,0),點(diǎn)P為斜邊OB上的一個(gè)動(dòng)點(diǎn),則PA+PC的最小值為( )
A.
B.
C.
D.2
【答案】B
【解析】解:法一: 作A關(guān)于OB的對(duì)稱點(diǎn)D,連接CD交OB于P,連接AP,過(guò)D作DN⊥OA于N,
則此時(shí)PA+PC的值最小,
∵DP=PA,
∴PA+PC=PD+PC=CD,
∵B(3, ),
∴AB= ,OA=3,∠B=60°,由勾股定理得:OB=2 ,
由三角形面積公式得: ×OA×AB= ×OB×AM,
∴AM= ,
∴AD=2× =3,
∵∠AMB=90°,∠B=60°,
∴∠BAM=30°,
∵∠BAO=90°,
∴∠OAM=60°,
∵DN⊥OA,
∴∠NDA=30°,
∴AN= AD= ,由勾股定理得:DN= ,
∵C( ,0),
∴CN=3﹣ ﹣ =1,
在Rt△DNC中,由勾股定理得:DC= = ,
即PA+PC的最小值是 ,
法二:
如圖,作點(diǎn)C關(guān)于OB的對(duì)稱點(diǎn)D,連接AD,過(guò)點(diǎn)D作DM⊥OA于M.
∵AB= ,OA=3
∴∠AOB=30°,
∴∠DOC=2∠AOB=60°
∵OC=OD
∴△OCD是等邊三角形
∴DM=CDsin60°= ,OM=CM=CDcos60°=
∴AM=OA﹣OM=3﹣ =
∴AD= =
即PA+PC的最小值為
故選:B.
作A關(guān)于OB的對(duì)稱點(diǎn)D,連接CD交OB于P,連接AP,過(guò)D作DN⊥OA于N,則此時(shí)PA+PC的值最小,求出AM,求出AD,求出DN、CN,根據(jù)勾股定理求出CD,即可得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為⊙O的內(nèi)接四邊形,且對(duì)角線AC為直徑,AD=BC,過(guò)點(diǎn)D作DG⊥AC,垂足為E,DG分別與AB及CB延長(zhǎng)線交于點(diǎn)F、M.
(1)求證:四邊形ABCD是矩形;
(2)若點(diǎn)G為MF的中點(diǎn),求證:BG是⊙O的切線;
(3)若AD=4,CM=9,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,過(guò)點(diǎn)D作DE∥AC且DE= AC,連接AE交OD于點(diǎn)F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長(zhǎng)為2,∠ABC=60°,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為4cm,直線l與⊙O相交于A、B兩點(diǎn),AB=4 cm,P為直線l上一動(dòng)點(diǎn),以1cm為半徑的⊙P與⊙O沒(méi)有公共點(diǎn).設(shè)PO=dcm,則d的范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于x的二次函數(shù)y=﹣x2+ax(a>0),點(diǎn)A(n,y1)、B(n+1,y2)、C(n+2,y3)都在這個(gè)二次函數(shù)的圖象上,其中n為正整數(shù).
(1)y1=y2 , 請(qǐng)說(shuō)明a必為奇數(shù);
(2)設(shè)a=11,求使y1≤y2≤y3成立的所有n的值;
(3)對(duì)于給定的正實(shí)數(shù)a,是否存在n,使△ABC是以AC為底邊的等腰三角形?如果存在,求n的值(用含a的代數(shù)式表示);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在方格紙中,△ABC的三個(gè)頂點(diǎn)及D,E,F(xiàn),G,H五個(gè)點(diǎn)分別位于小正方形的頂點(diǎn)上.
(1)現(xiàn)以D,E,F(xiàn),G,H中的三個(gè)點(diǎn)為頂點(diǎn)畫三角形,在所畫的三角形中與△ABC不全等但面積相等的三角形是(只需要填一個(gè)三角形)
(2)先從D,E兩個(gè)點(diǎn)中任意取一個(gè)點(diǎn),再?gòu)腇,G,H三個(gè)點(diǎn)中任意取兩個(gè)不同的點(diǎn),以所取得這三個(gè)點(diǎn)為頂點(diǎn)畫三角形,求所畫三角形與△ABC面積相等的概率(用畫樹狀圖或列表格求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.Rt△ABC內(nèi)接于⊙O,BC為直徑,AB=4,AC=3,D是 的中點(diǎn),CD與AB的交點(diǎn)為E,則 等于( )
A.4
B.3.5
C.3
D.2.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB=DC,AC與BD相交于P.已知A(2,3),B(1,1),D(4,3),則點(diǎn)P的坐標(biāo)為( , ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)布袋里裝有紅色、黃色、黑色三個(gè)球,它們除顏色外其余都相同,從中任意摸出1個(gè)球,記下顏色后放回,攪勻,再摸出1個(gè)球.
(1)請(qǐng)用樹狀圖或列表法列舉出兩次摸球可能出現(xiàn)的各種結(jié)果;
(2)摸到的兩個(gè)球顏色相同的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com