【題目】如圖,在中,點(diǎn)是的中點(diǎn),點(diǎn)是線段的延長線上的一動點(diǎn),連接,過點(diǎn)作的平行線,與線段的延長線交于點(diǎn),連接、.
求證:四邊形是平行四邊形.
若,,則在點(diǎn)的運(yùn)動過程中:
①當(dāng)________時(shí),四邊形是矩形,試說明理由;
②當(dāng)________時(shí),四邊形是菱形.
【答案】(1)、證明過程見解析;(2)、①、2;②、4.
【解析】
(1)、首先證明△BEF和△DCF全等,從而得出DC=BE,結(jié)合DC和AB平行得出平行四邊形;(2)、①、根據(jù)矩形得出∠CEB=90°,結(jié)合∠ABC=120°得出∠CBE=60°,根據(jù)直角三角形的性質(zhì)得出答案;②、根據(jù)菱形的性質(zhì)以及∠ABC=120°得出△CBE是等邊三角形,從而得出答案.
(1)、證明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵點(diǎn)F是BC的中點(diǎn),
∴BF=CF,在△DCF和△EBF中,∠CDF=∠FEB,∠DCF=∠EBF,F(xiàn)C=BF,
∴△EBF≌△DCF(AAS), ∴DC=BE, ∴四邊形BECD是平行四邊形;
(2)、①BE=2;∵當(dāng)四邊形BECD是矩形時(shí),∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;
∴∠ECB=30°,∴BE=BC=2,
②BE=4,∵四邊形BECD是菱形時(shí),BE=EC,∵∠ABC=120°,∴∠CBE=60°,
∴△CBE是等邊三角形,∴BE=BC=4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以頂點(diǎn)A為圓心,AD長為半徑,在AB邊上截取AE=AD,用尺規(guī)作圖法作出∠BAD的角平分線AG,若AD=5,DE=6,則AG的長是_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為準(zhǔn)備母親節(jié)禮物,同學(xué)們委托小明用其支付寶余額團(tuán)購鮮花或禮盒.每束鮮花的售價(jià)相同,每份禮盒的售價(jià)也相同.若團(tuán)購15束鮮花和18份禮盒,余額差80元;若團(tuán)購18束鮮花和15份禮盒,余額剩70元.若團(tuán)購19束鮮花和14份禮盒,則支付寶余額剩_______元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個(gè)有45°角的三角板的直角頂點(diǎn)放在一張寬為3cm的紙帶邊沿上,另一個(gè)頂
點(diǎn)在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),
則三角板的最大邊的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
如圖1,⊙O1和⊙O2外切于點(diǎn)C,AB是⊙O1和⊙O2外公切線,A、B為切點(diǎn),
求證:AC⊥BC
證明:過點(diǎn)C作⊙O1和⊙O2的內(nèi)公切線交AB于D,
∵DA、DC是⊙O1的切線
∴DA=DC.
∴∠DAC=∠DCA.
同理∠DCB=∠DBC.
又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,
∴∠DCA+∠DCB=90°.
即AC⊥BC.
根據(jù)上述材料,解答下列問題:
(1)在以上的證明過程中使用了哪些定理?請寫出兩個(gè)定理的名稱或內(nèi)容;
(2)以AB所在直線為x軸,過點(diǎn)C且垂直于AB的直線為y軸建立直角坐標(biāo)系(如圖2),已知A、B兩點(diǎn)的坐標(biāo)為(﹣4,0),(1,0),求經(jīng)過A、B、C三點(diǎn)的拋物線y=ax2+bx+c的函數(shù)解析式;
(3)根據(jù)(2)中所確定的拋物線,試判斷這條拋物線的頂點(diǎn)是否落在兩圓的連心O1O2上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中每個(gè)小正方形邊長都是1.
(1)畫出△ABC關(guān)于直線1對稱的圖形△A1BlCl;
(2)在直線l上找一點(diǎn)P,使PB=PC;(要求在直線1上標(biāo)出點(diǎn)P的位置)
(3)連接PA、PC,計(jì)算四邊形PABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點(diǎn),
且∠ABM=∠BAM,連接BM,MN,BN.
(1)求證:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,E,F是對角線BD上的兩點(diǎn), 如果添加一個(gè)條件使△ABE≌△CDF,則添加的條件不能是( )
A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,,點(diǎn)、分別是邊、上的動點(diǎn).連接、,點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn),連接.則的最大值與最小值的差為( )
A.2B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com