精英家教網(wǎng)如圖,已知⊙O與CA、CB相切于點A、B,OA=OB=2
3
cm,AB=6 cm,求∠ACB的度數(shù).
分析:過O作OD⊥AB于D;根據(jù)等腰三角形三線合一的性質知:OD垂直平分AB,且OD平分∠AOB;
在Rt△OBD中,已知了OB、BD的長,可求出∠BOD的正弦值,進而可求出∠BOD、∠AOB的度數(shù).
在四邊形AOBC中,∠AOB和∠ACB互補,由此可求出∠ACB的度數(shù).
解答:精英家教網(wǎng)解:過O作OD⊥AB于D;
△OAB中,OA=OB,OD⊥AB;
∴AD=BD,∠AOD=∠BOD=
1
2
∠AOB(等腰三角形三線合一);
Rt△BOD中,OB=2
3
,BD=3;
∴sin∠BOD=
BD
OB
=
3
2
,即∠BOD=60°;
∴∠AOB=120°;
∵CB、CA都是⊙O的切線,
∴∠OAC=∠OBC=90°;
∴∠AOB+∠ACB=180°,
∴∠ACB=180°-∠AOB=60°.
點評:此題考查了垂徑定理、解直角三角形、多邊形的內角和、切線的性質等知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:第24章《圓(下)》中考題集(24):24.2 圓的切線(解析版) 題型:解答題

如圖,已知⊙O與CA、CB相切于點A、B,OA=OB=2cm,AB=6 cm,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:第35章《圓(二)》中考題集(18):35.3 探索切線的性質(解析版) 題型:解答題

如圖,已知⊙O與CA、CB相切于點A、B,OA=OB=2cm,AB=6 cm,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:第3章《圓》中考題集(51):3.5 直線和圓的位置關系(解析版) 題型:解答題

如圖,已知⊙O與CA、CB相切于點A、B,OA=OB=2cm,AB=6 cm,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2005年青海省西寧市中考數(shù)學試卷(解析版) 題型:解答題

(2005•西寧)如圖,已知⊙O與CA、CB相切于點A、B,OA=OB=2cm,AB=6 cm,求∠ACB的度數(shù).

查看答案和解析>>

同步練習冊答案