【答案】
分析:(1)設(shè)出拋物線(xiàn)解析式y(tǒng)=a(x-h)
2+k,依據(jù)它的頂點(diǎn)坐標(biāo)和所經(jīng)過(guò)的B點(diǎn)坐標(biāo),即可求出拋物線(xiàn)的性質(zhì),
(2)①根據(jù)已知,很容易就可以得到D點(diǎn)的坐標(biāo),E點(diǎn)為動(dòng)點(diǎn),分情況討論:當(dāng)點(diǎn)E與B重合時(shí);當(dāng)點(diǎn)E與O重合時(shí);當(dāng)點(diǎn)E與A重合時(shí);當(dāng)點(diǎn)E不與B、O、A重合時(shí),結(jié)合拋物線(xiàn)解析式,設(shè)出E點(diǎn)的坐標(biāo),依據(jù)勾股定理,求出DE關(guān)于x、y的表達(dá)式,然后,根據(jù)E點(diǎn)的橫坐標(biāo)和N點(diǎn)的橫坐標(biāo)相同,求出EN關(guān)于x、y的表達(dá)式,即可看出它們相等,
②提出假設(shè),根據(jù)已知點(diǎn)的坐標(biāo)求證相關(guān)點(diǎn)的坐標(biāo),便可得知相關(guān)線(xiàn)段的長(zhǎng)度,即可求證E點(diǎn)的坐標(biāo)
解答:解:(1)設(shè)拋物線(xiàn)的解析式為y=a(x-h)
2+k,
∵拋物線(xiàn)的頂點(diǎn)A(2,-1)且過(guò)點(diǎn)B(4,0),∴y=a(x-2)
2-1,
且0=4a-1,∴
(3分)
∴拋物線(xiàn)的解析式為
(4分)
(2)①猜想:DE=NE(5分)
證明:∵點(diǎn)D為拋物線(xiàn)對(duì)稱(chēng)軸與x軸的交點(diǎn),
∴得D(2,0)
當(dāng)點(diǎn)E與B重合時(shí),
∵D(2,0),B(4,0),
∴ED=2,
∵過(guò)E作直線(xiàn)y=-2的垂線(xiàn),垂足為N
∴EN=2,
∴DE=EN
當(dāng)點(diǎn)E與O重合時(shí),
∵D(2,0),
DE=2,EN=2,
∴DE=EN
當(dāng)點(diǎn)E與A重合時(shí),
∵A(2,-1),EN=2
∴DE=1,EN=1,
∴DE=EN(7分)
當(dāng)點(diǎn)E不與B、O、A重合時(shí),
設(shè)E點(diǎn)坐標(biāo)為
,EN交x軸于點(diǎn)F,
在Rt△DEF中,DE
2=DF
2+EF
2=(x-2)
2+y
2(8分)
又∵NE=y+2,∴
=y
2+x
2-4x+4=(x-2)
2+y
2(9分)∴DE=NE
綜上所述,DE=NE(10分)
②答:存在(11分)
當(dāng)點(diǎn)E在x軸上時(shí)△EDN為直角三角形,點(diǎn)E在x軸下方時(shí)△EDN為鈍角三角形,所以只當(dāng)E在x軸上方時(shí)△EDN才可能為等邊三角形(注意:未作上述說(shuō)明不扣分。
理由一:若△EDN為等邊三角形,∵DE=NE=DN,且EN⊥x軸,
∴EF=FN=2,∴
(12分)
解得
(13分)
∴點(diǎn)E的坐標(biāo)為
(14分)
理由二:若△EDN為等邊三角形,∵DE=NE=DN,且EN⊥x軸,
∴∠EFD=30°,EF=FN=2(12分)
在Rt△DEF中,
,
∴
(13分)
∵DA是拋物線(xiàn)的對(duì)稱(chēng)軸,且D(2,0),
∴根據(jù)拋物線(xiàn)的對(duì)稱(chēng)性得點(diǎn)E的坐標(biāo)為
(14分)
點(diǎn)評(píng):本題主要考查二次函數(shù)解析式的確定,根據(jù)解析式求點(diǎn)的坐標(biāo)、勾股定理等知識(shí)點(diǎn),綜合性強(qiáng),考查學(xué)生分類(lèi)討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法