如圖,點E是正方形ABCD的邊BC上的一點,∠DAE的平分線AF交BC的延長線于點F,交CD于點G
(1)若AB=8,BF=16,求CE的長;
(2)求證:AE=BE+DG.
(1)∵四邊形ABCD是正方形,
∴AB=BC=8,∠B=90°,ADBC,
∴∠DAG=∠F,
∵AF平分∠DAE,
∴∠DAG=∠EAF,
∴∠EAF=∠F,
∴AE=EF,
設(shè)CE=x,則BC=8-x,EF=AE=8+x,
在Rt△ABE中,由勾股定理得:82+(8-x)2=(8+x)2,
x=2,
解CE=2;

(2)
證明:延長CB到M,使BM=DG,連接AM,
∵四邊形ABCD是正方形,
∴∠D=∠ABM=90°,AD=AB,ABCD,
∴∠3=∠2+∠5=∠4,
在△ABM和△ADG中
AB=AD
∠ABM=∠D
BM=DG

∴△ABM≌△ADG,
∴∠4=∠∠M,∠1=∠6,
∵∠1=∠2(角平分線定義),
∴∠2=∠6,
∴∠4=∠M=∠3=∠2+∠5=∠6+∠5,
即∠M=∠MAE,
∴AE=BE,
∵BM=DG,
∴AE=BE+DG.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示的方格紙中,每個方格都是邊長為1的正方形,點A是方格紙中的一個格點(小正方形的頂點).在這個5×5的方格紙中,以A為其中一個頂點,面積等于
5
2
的格點等腰直角三角形(三角形的三個頂點都是格點)的個數(shù)為(  )
A.10個B.12個C.14個D.16個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖,已知在正方形ABCD中,M是AB的中點,E是AB延長線上一點,MN⊥DM且交∠CBE的平分線于N.試判定線段MD與MN的大小關(guān)系;
(2)若將上述條件中的“M是AB的中點”改為“M是AB邊上或AB延長線上任意一點”,其余條件不變.試問(1)中的結(jié)論還成立嗎?如果成立,請證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

上海世博會中國國家館有“東方之冠”的美譽,如圖所示,其上部的最大四邊形是邊長為138米×138米的正方形.在國家館建設(shè)過程中,李工程師想檢測這個正方形設(shè)計得是否符合標準,但身邊只有一把足夠長的帶有刻度的皮尺,請幫助李工程師設(shè)計出一種檢測方案來,并寫出這種檢測方案的幾何依據(jù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,把邊長為1的正方形ABCD的對角線AC分成n段,以每一段為對角線作小正方形,所有小正方形的周長之和為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE=
1
4
BC=1.
(1)求證:CE=CF;
(2)若G在AD上,連接GC,且∠GCE=45°,求∠GCF的度數(shù);
(3)在(2)的條件下,求GC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,P是正方形ABCD內(nèi)一點,在正方形ABCD外有一點E,滿足∠ABE=∠CBP,BE=BP.
(1)求證:△CPB≌△AEB;
(2)求證:PB⊥BE;
(3)若PA:PB=1:2,∠APB=135°,求cos∠PAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,邊長為3cm的正方形ABCD沿BA方向平移2個單位,則長方形B1C1DA的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

關(guān)于中心對稱的兩個圖形,對應(yīng)線段______(或在同一直線上)且______;關(guān)于某直線對稱的兩個圖形,它們的對應(yīng)線段(或延長線)相交,那么交點在______上.

查看答案和解析>>

同步練習(xí)冊答案