如圖,已知A,B兩點的坐標分別為(2,0),(0,2),⊙C的圓心坐標為(-1,0),半徑為1.若D是⊙C上的一個動點,線段DA與y軸交于點E,則△ABE面積的最小值是
2-
2
2
2-
2
2
分析:根據(jù)三角形的面積公式,△ABE底邊BE上的高AO不變,BE越小,則面積越小,可以判斷當AD與⊙C相切時,BE的值最小,根據(jù)勾股定理求出AD的值,然后根據(jù)相似三角形對應邊成比例列式求出OE的長度,代入三角形的面積公式進行計算即可求解.
解答:解:如圖所示,當AD與⊙C相切時,線段BE最短,此時△ABE面積的最小,
∵A(2,0),C(-1,0),⊙C半徑為1,
∴AO=2,AC=2+1=3,CD=1,
在Rt△ACD中,AD=
AC2-CD2
=
32-12
=2
2
,
∵CD⊥AD,
∴∠D=90°,
∴∠D=∠AOE,
在△AOE與△ADC中,
∠D=∠AOE
∠EAO=∠CAD
,
∴△AOE∽△ADC,
EO
CD
=
AO
AD

EO
1
=
2
2
2
,
解得EO=
2
2

∵點B(0,2),
∴OB=2,
∴BE=OB-OE=2-
2
2
,
∴△ABE面積的最小值=
1
2
×BE×AO=
1
2
(2-
2
2
)×2=2-
2
2

故答案為:2-
2
2
點評:本題考查了坐標與圖形的性質(zhì),勾股定理,相似三角形的判定與性質(zhì),根據(jù)相似三角形對應邊成比例列式求出OE的長度是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知A、C兩點在雙曲線y=
1x
上,點C的橫坐標比點A的橫坐標多2,AB⊥x軸,CD⊥x軸,CE⊥AB,垂足分別是B、D、E.
(1)當A的橫坐標是1時,求△AEC的面積S1
(2)當A的橫坐標是n時,求△AEC的面積Sn;
(3)當A的橫坐標分別是1,2,…,10時,△AEC的面積相應的是S1,S2,…,S10,求S1+S2+…+S10的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•福田區(qū)二模)如圖,已知A、B兩點的坐標分別為(-2,0)、(0,1),⊙C的圓心坐標為(0,-1),半徑為1.若D是⊙C上的一個動點,射線AD與y軸交于點E,則△ABE面積的最大值是
11
3
11
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知A、B兩點的坐標分別為(2
3
,0)、(0,2),P是△AOB外接圓上的一點,且∠AOP=45°,則點P的坐標為
3
+1,
3
+1)或(
3
-1,1-
3
3
+1,
3
+1)或(
3
-1,1-
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知M、N兩點在正方形ABCD的對角線BD上移動,∠MCN為定角,連接AM、AN,并延長分別交BC、CD于E、F兩點,則∠CME與∠CNF在M、N兩點移動過程,它們的和是否有變化?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知E、F兩點在線段BC上,AB=AC,BF=CE,你能判斷線段AF和AE的大小關系嗎?說明理由.

查看答案和解析>>

同步練習冊答案