【題目】如圖,拋物線y=ax2+bx+c的圖象與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3),頂點(diǎn)為D.
(1)求此拋物線的解析式;
(2)求此拋物線頂點(diǎn)D的坐標(biāo)和對稱軸.
【答案】 (1) y=x-2x-3;(2) D (1,-4),對稱軸是直線x=1.
【解析】
(1)根據(jù)拋物線與x軸的兩個(gè)交點(diǎn)坐標(biāo)可設(shè)二次函數(shù)交點(diǎn)式: y=a(x+1)(x-3),
然后根據(jù)拋物線又經(jīng)過點(diǎn)點(diǎn)C(0,-3),將點(diǎn)C代入解析式可求出a,從而求出函數(shù)解析式,
(2)根據(jù)二次函數(shù)頂點(diǎn)坐標(biāo)公式可直接求二次函數(shù)頂點(diǎn)和對稱軸方程.
解:(1)設(shè)此拋物線的解析式是y=a(x+1)(x-3),
把點(diǎn)C(0,-3)代入,得
-3=a·1·(-3),
解得a=1,
∴y=(x+1)(x-3)=x2-2x-3.
(2)頂點(diǎn)D的坐標(biāo)是(1,-4),對稱軸是直線x=1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】早上,小明從家里步行去學(xué)校,出發(fā)一段時(shí)間后,小明媽媽發(fā)現(xiàn)小明的作業(yè)本落在家里,便帶上作業(yè)本騎車追趕,途中追上小明兩人稍作停留,媽媽騎車返回,小明繼續(xù)步行前往學(xué)校,兩人同時(shí)到達(dá).設(shè)小明在途的時(shí)間為x,兩人之間的距離為y,則下列選項(xiàng)中的圖象能大致反映y與x之間關(guān)系的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt中,,點(diǎn)、分別在、上,,連接,將線段繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)(即)后得,連接.
(1)求證:≌;
(2)若∥,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知 A(-2,0),B(0,m)兩點(diǎn),且線段AB= 2 ,以 AB 為邊在第二象限內(nèi)作正方形 ABCD。
(1)求點(diǎn) B 的坐標(biāo)
(2)在 x 軸上是否存在點(diǎn) Q,使△QAB 是以 AB 為腰的等腰三角形?若存在,請直接寫出點(diǎn) Q 的坐標(biāo),若不存在,請說明理由;
(3)如果在坐標(biāo)平面內(nèi)有一點(diǎn) P(a,3),使得△ABP 的面積與正方形 ABCD 的面 積相等,求 a 的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華要買一種標(biāo)價(jià)為5元的練習(xí)本,學(xué)校旁邊有甲、乙兩個(gè)文具店正在做促銷活動(dòng),甲商店的優(yōu)惠條件是:一次性購買超過10本,則超過的部分按標(biāo)價(jià)的銷售;乙商店的優(yōu)惠條件是:活動(dòng)期間所有文具按標(biāo)價(jià)的銷售;
(1)現(xiàn)小華要買20本練習(xí)本,他若選擇甲商店,需花元______,他若選擇乙商店,需花______元.
(2)若小華現(xiàn)有120元錢,他最多可買多少本練習(xí)本?
(3)試分析小華如果要買本練習(xí)本時(shí),到哪個(gè)商店購買較省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三個(gè)頂點(diǎn)在邊長為1的正方形網(wǎng)格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).
(1)畫出△ABC及關(guān)于y軸對稱的△A1B1C1;
(2)寫出點(diǎn)A的對應(yīng)點(diǎn)A1的坐標(biāo),點(diǎn)B的對應(yīng)點(diǎn)B1的坐標(biāo),點(diǎn)C的對應(yīng)點(diǎn)C1的坐標(biāo);
(3)請直接寫出以AB為邊且與△ABC全等的三角形的第三個(gè)頂點(diǎn)(不與C重合)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖,反比例函數(shù)的圖象經(jīng)過點(diǎn)A(1,4),直線y=2x+b(b≠0)與雙曲線在第一、三象限分別相交于P,Q兩點(diǎn),與x軸、y軸分別相交于C,D兩點(diǎn).(1)求k的值;(2)當(dāng)b=-3時(shí),求△OCD的面積;
(3)連接OQ,是否存在實(shí)數(shù)b,使得S△ODQ=S△OCD?若存在,請求出b的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、D、B、E四點(diǎn)在同一條直線上,AD=BE,BC∥EF,BC=EF.
(1)求證:AC=DF;
(2)若CD為∠ACB的平分線,∠A=25°,∠E=71°,求∠CDF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com