【題目】新龜兔賽跑的故事:龜兔從同一地點(diǎn)同時出發(fā)后,兔子很快把烏龜遠(yuǎn)遠(yuǎn)甩在后頭.驕傲自滿的兔子覺得自己遙遙領(lǐng)先,就躺在路邊呼呼大睡起來.當(dāng)它一覺醒來,發(fā)現(xiàn)烏龜已經(jīng)超過它,于是奮力直追,最后同時到達(dá)終點(diǎn).用S1、S2分別表示烏龜和兔子賽跑的路程,t為賽跑時間,則下列圖象中與故事情節(jié)相吻合的是( 。
A.B.
C.D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,單位長度為的網(wǎng)格坐標(biāo)系中,一次函數(shù)與坐標(biāo)軸交于、兩點(diǎn),反比例函數(shù)經(jīng)過一次函數(shù)上一點(diǎn).
(1)求反比例函數(shù)解析式,并用平滑曲線描繪出反比例函數(shù)圖像;
(2)依據(jù)圖像直接寫出當(dāng)時不等式的解集;
(3)若反比例函數(shù)與一次函數(shù)交于、兩點(diǎn),在圖中用直尺與鉛筆畫出兩個矩形(不寫畫法),要求每個矩形均需滿足下列兩個條件:
①四個頂點(diǎn)均在格點(diǎn)上,且其中兩個頂點(diǎn)分別是點(diǎn)、點(diǎn);
②矩形的面積等于的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在中,,點(diǎn)是的中點(diǎn),連結(jié)并延長,與的延長線相交于點(diǎn),連結(jié).若,,則四邊形的面積是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=540,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,過點(diǎn)B作⊙O的切線,交AC的延長線于點(diǎn)F。
(1)求證:BE=CE;
(2)求∠CBF的度數(shù);
(3)若AB=6,求的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備購進(jìn)一批甲、乙兩種辦公桌若干張,并且每買1張辦公桌必須買2把椅子,椅子每把100元,若學(xué)校購進(jìn)20張甲種辦公桌和15張乙種辦公桌共花費(fèi)24000元;購買10張甲種辦公桌比購買5張乙種辦公桌多花費(fèi)2000元.
(1)求甲、乙兩種辦公桌每張各多少元?
(2)若學(xué)校購買甲乙兩種辦公桌共40張,且甲種辦公桌數(shù)量不多于乙種辦公桌數(shù)量的3倍,請你給出一種費(fèi)用最少的方案,并求出該方案所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為檢測師生體溫,在校門安裝了某型號測溫門.如圖為該測溫門截面示意圖,已知測溫門AD的頂部A處距地面高為2.2m,為了解自己的有效測溫區(qū)間.身高1.6m的小聰做了如下實(shí)驗(yàn):當(dāng)他在地面N處時測溫門開始顯示額頭溫度,此時在額頭B處測得A的仰角為18°;在地面M處時,測溫門停止顯示額頭溫度,此時在額頭C處測得A的仰角為60°.求小聰在地面的有效測溫區(qū)間MN的長度.(額頭到地面的距離以身高計,計算精確到0.1m,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,直線y=2x+2和直線y=x+2分別交x軸于點(diǎn)A和點(diǎn)B.則下列直線中,與x軸的交點(diǎn)不在線段AB上的直線是( )
A.y=x+2B.y=x+2C.y=4x+2D.y=x+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一把矩形直尺ABCD和一塊含30°角的三角板EFG擺放在平面直角坐標(biāo)系中,AB在x軸上,點(diǎn)G與點(diǎn)A重合,點(diǎn)F在AD上,三角板的直角邊EF交BC于點(diǎn)M,反比例函數(shù)y=(x>0)的圖象恰好經(jīng)過點(diǎn)F,M.若直尺的寬CD=3,三角板的斜邊FG=,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,∠A=45°,連接BD,且BD⊥AD,點(diǎn)E、點(diǎn)F分別是AB、CD上的點(diǎn),連接EF交BD于點(diǎn)O,且EF⊥CD,BE=DF=1.
(1)求EF的長;
(2)直接寫出ABCD的面積 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com