(2012•濟(jì)南)如圖,∠MON=90°,矩形ABCD的頂點(diǎn)A、B分別在邊OM,ON上,當(dāng)B在邊ON上運(yùn)動(dòng)時(shí),A隨之在邊OM上運(yùn)動(dòng),矩形ABCD的形狀保持不變,其中AB=2,BC=1,運(yùn)動(dòng)過程中,點(diǎn)D到點(diǎn)O的最大距離為( 。
分析:取AB的中點(diǎn)E,連接OE、DE、OD,根據(jù)三角形的任意兩邊之和大于第三邊可知當(dāng)O、D、E三點(diǎn)共線時(shí),點(diǎn)D到點(diǎn)O的距離最大,再根據(jù)勾股定理列式求出DE的長,根據(jù)直角三角形斜邊上的中線等于斜邊的一半求出OE的長,兩者相加即可得解.
解答:解:如圖,取AB的中點(diǎn)E,連接OE、DE、OD,
∵OD<OE+DE,
∴當(dāng)O、D、E三點(diǎn)共線時(shí),點(diǎn)D到點(diǎn)O的距離最大,
此時(shí),∵AB=2,BC=1,
∴OE=AE=
1
2
AB=1,
DE=
AD2+AE2
=
12+12
=
2
,
∴OD的最大值為:
2
+1.
故選A.
點(diǎn)評:本題考查了直角三角形斜邊上的中線等于斜邊的一半得到性質(zhì),三角形的三邊關(guān)系,矩形的性質(zhì),勾股定理,根據(jù)三角形的三邊關(guān)系判斷出點(diǎn)O、E、D三點(diǎn)共線時(shí),點(diǎn)D到點(diǎn)O的距離最大是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)南)如圖,直線a∥b,直線c與a,b相交,∠1=65°,則∠2=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)南)如圖,矩形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點(diǎn)A(2,0)同時(shí)出發(fā),沿矩形BCDE的邊作環(huán)繞運(yùn)動(dòng),物體甲按逆時(shí)針方向以1個(gè)單位/秒勻速運(yùn)動(dòng),物體乙按順時(shí)針方向以2個(gè)單位/秒勻速運(yùn)動(dòng),則兩個(gè)物體運(yùn)動(dòng)后的第2012次相遇地點(diǎn)的坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)南)如圖,二次函數(shù)的圖象經(jīng)過(-2,-1),(1,1)兩點(diǎn),則下列關(guān)于此二次函數(shù)的說法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)南)如圖,已知雙曲線y=
kx
經(jīng)過點(diǎn)D(6,1),點(diǎn)C是雙曲線第三象限上的動(dòng)點(diǎn),過C作CA⊥x軸,過D作DB⊥y軸,垂足分別為A,B,連接AB,BC
(1)求k的值;
(2)若△BCD的面積為12,求直線CD的解析式;
(3)判斷AB與CD的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)南)如圖1,拋物線y=ax2+bx+3與x軸相交于點(diǎn)A(-3,0),B(-1,0),與y軸相交于點(diǎn)C,⊙O1為△ABC的外接圓,交拋物線于另一點(diǎn)D.
(1)求拋物線的解析式;
(2)求cos∠CAB的值和⊙O1的半徑;
(3)如圖2,拋物線的頂點(diǎn)為P,連接BP,CP,BD,M為弦BD中點(diǎn),若點(diǎn)N在坐標(biāo)平面內(nèi),滿足△BMN∽△BPC,請直接寫出所有符合條件的點(diǎn)N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案