【題目】如圖,已知△ABE≌△ACD.
(1)如果BE=6,DE=2,求BC的長;
(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度數(shù).
【答案】(1)10;(2)15°
【解析】
(1)根據(jù)全等三角形的性質(zhì),可得出BE=CD,根據(jù)BE=6,DE=2,得出CE=4,從而得出BC的長;
(2)根據(jù)全等三角形的性質(zhì)可得出∠BAE=∠CAD,即可得出∠BAD=∠CAE,計算∠CAD﹣∠CAE即得出答案.
解:(1)∵△ABE≌△ACD,
∴BE=CD,∠BAE=∠CAD,
又∵BE=6,DE=2,
∴EC=DC﹣DE=BE﹣DE=4,
∴BC=BE+EC=10;
(2)∠CAD=∠BAC﹣∠BAD=75°﹣30°=45°,
∴∠BAE=∠CAD=45°,
∴∠DAE=∠BAE﹣∠BAD=45°﹣30°=15°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用若干個形狀、大小完全相同的矩形紙片圍成正方形,4個矩形紙片圍成如圖①所示的正方形,其陰影部分的面積為12;8個矩形紙片圍成如圖②所示的正方形,其陰影部分的面積為8;12個矩形紙片圍成如圖③所示的正方形,其陰影部分的面積為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,M,N分別是CD,BC的中點,且AM⊥CD,AN⊥BC。
(1)求證:∠BAD=2∠MAN;
(2)連接BD,若∠MAN=70°,∠DBC=40°,求∠ADC。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=2,點M為正方形ABCD的邊CD上的動點(與點C,D不重合),連接BM,作MF⊥BM,與正方形ABCD的外角∠ADE的平分線交于點F.設(shè)CM=x,△DFM的面積為y,則y與x之間的函數(shù)關(guān)系式為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘.在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t
(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了30分鐘;
③乙用16分鐘追上甲;
④乙到達(dá)終點時,甲離終點還有320米
其中正確的結(jié)論有( 。
A. 1 個B. 2 個C. 3 個D. 4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于點P (x,y),若點Q的坐標(biāo)為(ax+y,x+ay), 其中a為常數(shù),則稱點Q是點P的“a級關(guān)聯(lián)點",例如,點P(1,4)的“3級關(guān)聯(lián)點"為Q (3×1+4,1+3×4), 即Q (7,13)。
(1)已知點A (-2,6)的“級關(guān)聯(lián)點”是點A1,點B的“2級關(guān)聯(lián)點”是B1 (3, 3), 求點A1和點B的坐標(biāo):
(2)已知點M (m-1, 2m)的“-3級關(guān)聯(lián)點"M位于坐標(biāo)軸上,求M的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+x+與x軸交于點A,B(點A在點B的左側(cè)),與y軸交于點C.
(1)求點A,B,C的坐標(biāo);
(2)若該拋物線的頂點是點D,求四邊形OCDB的面積;
(3)已知點P是該拋物線對稱軸的一點,若以點P,O,D為頂點的三角形是等腰三角形,請直接寫出點P的坐標(biāo).(不用說理)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE中,,,邊AD與邊BC交于點P(不與點B,C重合),點B,E在AD異側(cè),AI、CI分別平分,.
(1)求證:;
(2)設(shè),請用含的式子表示PD,并求PD的最大值;
(3)當(dāng)時,的取值范圍為,分別直接寫出m,n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com