(2006•樂山)已知:如圖,初二•一班數(shù)學(xué)興趣小組為了測量河兩岸建筑物AB和建筑物CD的水平距離AC,他們首先在A點處測得建筑物CD的頂部D點的仰角為25°,然后爬到建筑物AB的頂部B處測得建筑物CD的頂部D點的俯角為15°30′.已知建筑物AB的高度為30米,求兩建筑物的水平距離AC.(精確到0.1米)

【答案】分析:首先分析圖形,根據(jù)題意構(gòu)造直角三角形.本題涉及多個直角三角形,應(yīng)利用其公共邊構(gòu)造三角關(guān)系,進而可求出答案.
解答:解:如圖:過D作DH⊥AB,垂足為H.
設(shè)AC=x米,
在Rt△ACD中,∠ACD=90°,∠DAC=25°,
∴CD=AC•tan∠DAC=xtan25°.
在Rt△BDH中,∠BHD=90°,
∠BDH=∠BDE=15°30′,
∴BH=DH•tan15°30′=AC•tan15°30′=x•tan15°30′.
∵CD=AH,AH+HB=AB,
∴x(tan25°+tan15°30′)=30.

答:兩建筑物的水平距離AC為40.3米.
點評:本題要求學(xué)生借助仰角關(guān)系構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年甘肅省蘭州市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

(2006•樂山)已知:如圖,拋物線y=ax2+bx+c的頂點C在以D(-2,-2)為圓心,4為半徑的圓上,且經(jīng)過⊙D與x軸的兩個交點A、B,連接AC、BC、OC.
(1)求點C的坐標(biāo);
(2)求圖中陰影部分的面積;
(3)在拋物線上是否存在點P,使DP所在直線平分線段OC?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•樂山)已知:如圖,拋物線y=ax2+bx+c的頂點C在以D(-2,-2)為圓心,4為半徑的圓上,且經(jīng)過⊙D與x軸的兩個交點A、B,連接AC、BC、OC.
(1)求點C的坐標(biāo);
(2)求圖中陰影部分的面積;
(3)在拋物線上是否存在點P,使DP所在直線平分線段OC?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年四川省樂山市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•樂山)已知:如圖,拋物線y=ax2+bx+c的頂點C在以D(-2,-2)為圓心,4為半徑的圓上,且經(jīng)過⊙D與x軸的兩個交點A、B,連接AC、BC、OC.
(1)求點C的坐標(biāo);
(2)求圖中陰影部分的面積;
(3)在拋物線上是否存在點P,使DP所在直線平分線段OC?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年初中數(shù)學(xué)第一輪復(fù)習(xí)教學(xué)案例.3.6.一元一次不等式(組)及其應(yīng)用(解析版) 題型:選擇題

(2006•樂山)已知一個矩形的相鄰兩邊長分別是3cm和xcm,若它的周長小于14cm,面積大于6cm2,則x的取值范圍在數(shù)軸上表示正確的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案