【題目】如圖,半徑為1的圓O1與半徑為3的圓O2相內切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數是 ( )
A. 1 B. 2 C. 3 D. 4
科目:初中數學 來源: 題型:
【題目】如圖所示,點C在線段AB上,AC = 8 cm,CB = 6 cm,點M、N分別是AC、BC的中點.
(1)求線段MN的長.
(2)若C為線段AB上任意一點,滿足AC+CB=a(cm),其他條件不變,你能猜想出MN的長度嗎?并說明理由.
(3)若C在線段AB的延長線上,且滿足AC-CB=b(cm),M、N分別為AC、BC的中點,你能猜想出MN的長度嗎?請畫出圖形,寫出你的結論,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E在菱形ABCD的對角線DB的延長線上,且∠AED=45°,過B作AE的垂線交AE于F,連接FD.當∠AFD=60°時,=___________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為了解全校學生到校上學的方式,在全校隨機抽取了若干名學生進行問卷調查.問卷給出了五種上學方式供學生選擇,每人只能選一項,且不能不選.同時把調查得到的結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).請根據圖中提供的信息解答下列問題:
(1)在這次調查中,一共抽取了多少名學生?
(2)通過計算補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“公交車”部分所對應的圓心角是多少度?
(4)若全校有1600名學生,估計該校乘坐私家車上學的學生約有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分別為邊AC、AB的中點.
(1)求∠A的度數;
(2)求EF和AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次數學測驗后,王老師把某一小組10名同學的成績以平均成績?yōu)榛鶞,并以高于平均成績記?/span>“+”,分別記為+10分,-5分,0分,+8分,-3分,+6分,-5分,-3分,+4分,-12分,通過計算知道這10名同學的平均成績是82分.
(1)這一小組成績最高分與最低分相差多少分?
(2)如果成績不低于80分為優(yōu)秀,那么這10名同學在這次數學測驗中優(yōu)秀率是百分之幾?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市舉行知識大賽,A校、B校各派出5名選手組成代表隊參加決賽,兩校派出選手的決賽成績如圖所示.
(1)根據圖示填寫下表:
(2)結合兩校成績的平均數和中位數,分析哪個學校的決賽成績較好;
(3)計算兩校決賽成績的方差,并判斷哪個學校代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD//BC,AB=DC=5,AD=1,BC=9,點P為邊BC上一動點,作PH⊥DC,垂足H在邊DC上,以點P為圓心PH為半徑畫圓,交射線PB于點E.
(1)當圓P過點A時,求圓P的半徑;
(2)分別聯結EH和EA,當△ABE∽△CEH時,以點B為圓心,r為半徑的圓B與圓P相交,試求圓B的半徑r的取值范圍;
(3)將劣弧沿直線EH翻折交BC于點F,試通過計算說明線段EH和EF的比值為定值,并求出此定值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點D,交AB于點E,且BE=BF,添加一個條件,仍不能證明四邊形BECF為正方形的是
A. BC=AC B. CF⊥BF C. BD=DF D. AC=BF
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com