求證:N=52×32n+1×2n-3n×6n+2能被13整除.

 

答案:
解析:

25´32n+1´2n-3n×3n+2×2n+2

=25´32n+1×2n-12×32n+1×2n

=13×32n+1×2n

能被13整除

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)計(jì)算:(5
2
-1)0+(
1
2
-1+
3
3
×3-|-2|-tan60°;
(2)先化簡(jiǎn),再求值:(3-
x
x+2
)
(x+2),其中x=-
3
2
;
(3)已知:如圖,在四邊形ABCD中,AB=CB,AD=CD.求證:∠C=∠A.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:△ABC的高AD所在直線與高BE所在直線相交于點(diǎn)F.
(1)如圖1,若△ABC為銳角三角形,且∠ABC=45°,過(guò)點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,求證:FG+DC=AD;
(2)如圖2,若∠ABC=135°,過(guò)點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,則FG、DC、AD之間滿足的數(shù)量關(guān)系是
 

(3)在(2)的條件下,若AG=5
2
,DC=3,將一個(gè)45°角的頂點(diǎn)與點(diǎn)B重合并繞點(diǎn)B旋轉(zhuǎn),這個(gè)角的兩邊分別交線段FG于M、N兩點(diǎn)(如圖3),連接CF,線段CF分別與線段BM、線段BN相交于P、Q兩點(diǎn),若NG=
3
2
,求線段PQ的長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列范例,按要求解答問(wèn)題.
例:已知實(shí)數(shù)a、b、c滿足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是關(guān)于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的兩個(gè)實(shí)數(shù)根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
將c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、設(shè)a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
將t、c的值同時(shí)代入①,得a=
3
2
,b=
3
2
.a(chǎn)=b=
3
2
,c=-1.
以上解法1是構(gòu)造一元二次方程解決問(wèn)題.若兩實(shí)數(shù)x、y滿足x+y=m,xy=n,則x、y是關(guān)于t的一元二次方程t2-mt+n=0的兩個(gè)實(shí)數(shù)根,然后利用判別式求解.
以上解法2是采用均值換元解決問(wèn)題.若實(shí)數(shù)x、y滿足x+y=m,則可設(shè)x=
m
2
+t,y=
m
2
-t.一些問(wèn)題根據(jù)條件,若合理運(yùn)用這種換元技巧,則能使問(wèn)題順利解決.
下面給出兩個(gè)問(wèn)題,解答其中任意一題:
(1)用另一種方法解答范例中的問(wèn)題.
(2)選用范例中的一種方法解答下列問(wèn)題:
已知實(shí)數(shù)a、b、c滿足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

查看答案和解析>>

同步練習(xí)冊(cè)答案