【題目】在某市組織的大型商業(yè)演出活動中,對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價80元,這樣按原定票價需花費6000元購買的門票張數,現在只花費了4800元.
(1)求每張門票的原定票價;
(2)根據實際情況,活動組織單位決定對于個人購票也采取優(yōu)惠政策,原定票價經過連續(xù)二次降價后降為324元,求平均每次降價的百分率.
【答案】
(1)解:設每張門票的原定票價為x元,則現在每張門票的票價為(x﹣80)元,根據題意得
= ,
解得x=400.
經檢驗,x=400是原方程的根.
答:每張門票的原定票價為400元
(2)解:設平均每次降價的百分率為y,根據題意得
400(1﹣y)2=324,
解得:y1=0.1,y2=1.9(不合題意,舍去).
答:平均每次降價10%
【解析】(1)設每張門票的原定票價為x元,則現在每張門票的票價為(x﹣80)元,根據“按原定票價需花費6000元購買的門票張數,現在只花費了4800元”建立方程,解方程即可;(2)設平均每次降價的百分率為y,根據“原定票價經過連續(xù)二次降價后降為324元”建立方程,解方程即可.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點M、N,點P在AB的延長線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線;
(2)若BC=2 ,sin∠BCP= ,求點B到AC的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了考察某種大麥細長的分布情況,在一塊試驗田里抽取了部分麥穗.測得它們的長度,數據整理后的頻數分布表及頻數分直方圖如下.根據以下信息,解答下列問題:
穗長x | 頻數 |
4.0≤x<4.3 | 1 |
4.3≤x<4.6 | 1 |
4.6≤x<4.9 | 2 |
4.9≤x<5.2 | 5 |
5.2≤x<5.5 | 11 |
5.5≤x<5.8 | 15 |
5.8≤x<6.1 | 28 |
6.1≤x<6.4 | 13 |
6.4≤x<6.7 | 11 |
6.7≤x<7.0 | 10 |
7.0≤x<7.3 | 2 |
7.3≤x<7.6 | 1 |
(Ⅰ)補全直方圖;
(Ⅱ)共抽取了麥穗 棵;
(Ⅲ)頻數分布表的組距是 ,組數是 ;
(Ⅳ)麥穗長度在5.8≤x<6.1范圍內麥穗有多少棵?占抽取麥穗的百分之幾?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),……,按這樣的運動規(guī)律,經過第100次運動后,動點P的坐標是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知, , 與成正比例, 與成反比例,并且當時, ,當時, .
()求關于的函數關系式.
()當時,求的值.
【答案】();(), .
【解析】分析:(1)首先根據與x成正比例, 與x成反比例,且當x=1時,y=4;當x=2時,y=5,求出 和與x的關系式,進而求出y與x的關系式,(2)根據(1)問求出的y與x之間的關系式,令y=0,即可求出x的值.
本題解析:
()設, ,
則,
∵當時, ,當時, ,
∴
解得, ,
∴關于的函數關系式為.
()把代入得,
,
解得: , .
點睛:本題考查了用待定系數法求反比例函數的解析式:(1)設出含有待定系數的反比例函數解析式y(tǒng)=kx(k為常數,k≠0);(2)把已知條件(自變量與對應值)代入解析式,得到待定系數的方程;(3)解方程,求出待定系數;(4)寫出解析式.
【題型】解答題
【結束】
24
【題目】如圖,菱形的對角線、相交于點,過點作且,連接、,連接交于點.
(1)求證:;
(2)若菱形的邊長為2, .求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E,F分別是銳角∠A兩邊上的點,AE=AF,分別以點E,F為圓心,以AE的長為半徑畫弧,兩弧相交于點D,連接DE,DF.
(1)請你判斷所畫四邊形的形狀,并說明理由;
(2)連接EF,若AE=8厘米,∠A=60°,求線段EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】自學下面材料后,解答問題
分母中含有未知數的不等式叫做分式不等式,如:;等那么如何求出它們的解集呢?
根據我們學過的有理數除法法則可知:兩數相除,同號得正,異號得負其字母表達式為:
若,,則;若,,則
若,,則;若,,則
反之:若,則或
若,則______或______.
根據上述規(guī)律
求不等式的解集.
直接寫出一個解集為或的最簡分式不等式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例,請補充完整.
原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,
連接EF,則EF=BE+DF,試說明理由.
(1)思路梳理
∵AB=AD
∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合
∵∠ADC=∠B=90°
∴∠FDG=180°
∴點F、D、G共線
根據 ,易證△AFG≌ ,進而得EF=BE+DF.
(2)聯(lián)想拓展
如圖2,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應滿足的數量關系,并寫出推理過程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com