拋物線與x軸交與,兩點,
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線與y軸交于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標;若不存在,請說明理由.
(1)y=-x2-2x+3;(2)Q(-1,2)
解析試題分析:(1)由題意把A(1,0)B(-3,0)代入到拋物線中即可求得結(jié)果;
(2)過B、C作直線BC與對稱軸x=-1的交點就是Q點,設(shè)直線BC解析式為y=kx+b,把B(-3,0)C(0,3)代入得直線BC的解析式,令XQ=-1,得YQ=2,即可求得結(jié)果.
(1)把A(1,0)B(-3,0)代入到拋物線中得
,解得
∴拋物線的解析式為y=-x2-2x+3;
(2)存在。
過B、C作直線BC與對稱軸x=-1的交點就是Q點,
設(shè)直線BC解析式為y=kx+b,把B(-3,0)C(0,3)代入得
,解得
∴y="x+3"
令XQ=-1,得YQ=2
∴Q(-1,2).
考點:二次函數(shù)的性質(zhì)
點評:二次函數(shù)的性質(zhì)是初中數(shù)學的重點和難點,是中考常見題,一般難度不大,需熟練掌握.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(35):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(32):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com