作业宝如圖,已知AD∥BE,∠1=∠2,試判斷∠A和∠E之間的大小關(guān)系,并說(shuō)明理由.

∠A=∠E,
證明:∵∠1=∠2,
∴DE∥AC,
∴∠E=∠EBC,
∵AD∥EB,
∴∠A=∠EBC,
∴∠E=∠A.
分析:首先根據(jù)∠1=∠2可得DE∥AC,進(jìn)而得到∠E=∠EBC,再根據(jù)AD∥EB可得∠A=∠EBC,進(jìn)而得到∠E=∠A.
點(diǎn)評(píng):此題主要考查了平行線的判定與性質(zhì),平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系.平行線的性質(zhì)是由平行關(guān)系來(lái)尋找角的數(shù)量關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,已知AD∥BE,∠CDE=∠C,試說(shuō)明∠A=∠E的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AD∥BE∥CF,它們依次交直線l1、l2于點(diǎn)A、B、C和點(diǎn)D、E、F.
(1)如果AB=6,BC=8,DF=21,求DE的長(zhǎng);
(2)如果DE:DF=2:5,AD=9,CF=14,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AD∥BE∥CF,BC=3,DE:EF=2:1,則AC=
9
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AD⊥BE,垂足C是BE的中點(diǎn),AB=DE.求證:AB∥DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

填寫理由或步驟
如圖,已知AD∥BE,∠A=∠E
因?yàn)锳D∥BE
(已知)
(已知)

所以∠A+
∠ABE
∠ABE
=180°
(兩直線平行,同旁內(nèi)角互補(bǔ))
(兩直線平行,同旁內(nèi)角互補(bǔ))

因?yàn)椤螦=∠E(已知)
所以
∠ABE
∠ABE
+
∠E
∠E
=180°
(等量代換)
(等量代換)

所以DE∥AC
(同旁內(nèi)角互補(bǔ),兩直線平行)
(同旁內(nèi)角互補(bǔ),兩直線平行)

所以∠1=
∠2.(兩直線平行,內(nèi)錯(cuò)角相等)
∠2.(兩直線平行,內(nèi)錯(cuò)角相等)

查看答案和解析>>

同步練習(xí)冊(cè)答案