如圖,在四邊形ABCD中,∠D=90°,AB=13,BC=12,CD=4,AD=3.
求:(1)AC的長度;
(2)判斷△ACB是什么三角形?并說明理由?
(3)四邊形ABCD的面積.

解:(1)在Rt△ACD中,CD=4,AD=3
由勾股定理,得CD2+AD2=AC2
∴AC=;

(2)△ACD是直角三角形;
理由如下:∵AB=13,BC=12,AC=5
∴BC2+AC2=122+52=169AB2=132=169
∴BC2+AC2=AB2
∴△ACB是Rt△,∠ACB=90°;

(3)S四邊形ABCD=S△ABC+S△ACD
==30+6=36.
分析:直角三角形中知道兩直角邊的長度,由勾股定理即可得到斜邊AC的長度.求出AC長度后我們就得知了△ACB的三邊長度,經(jīng)分析AC2+BC2=AB2,由勾股定理推論可以得出三角形ACB為直角三角形.四邊形ABCD是由兩個(gè)已知邊長的直角三角形組成的,我們可以分別求出兩個(gè)直角三角形的面積,它們的和就是四邊形ABCD的面積.
點(diǎn)評(píng):我們可以利用勾股定理求直角三角形邊長,同時(shí)也可以利用勾股定理反證三角形是否為直角三角形,在運(yùn)算題中要靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案