(2010•鐵嶺)如圖,已知△ABC中,AB=AC,∠A=36°.
(1)尺規(guī)作圖:在AC上求作一點P,使BP+PC=AB;(保留作圖痕跡,不寫作法)
(2)在已作的圖形中,連接PB,以點P為圓心,PB長為半徑畫弧交AC的延長線于點E,若BC=2cm,求扇形PBE的面積.

【答案】分析:(1)由于△ABC中,AB=AC,∠A=36°,由此可以得到∠ABC=∠ACB=72°,所以作∠ABC的平分線BP之后可以得到△ABP,△BPC它們都是等腰三角形,由此即可得到滿足BP+PC=AB的P的點;
(2)根據(jù)(1)的結(jié)論知道BC=BP=AB,并且∠BPC=72°,然后利用扇形的面積公式即可求出扇形PBE的面積.
解答:解:(1)如圖射線BD交AC于P,P即為所求;

(2)如圖,根據(jù)作圖得BP平分∠ABP=∠CBP,
而在△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°,
∴△PAB是等腰三角形,△BCP是等腰三角形,
∴AP=BP=BC=PE=2,∠BPC=72°,
∴S扇形PBE==π.
點評:此題主要考查了等腰三角形的特殊性質(zhì),特殊也考查了扇形面積的計算.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•鐵嶺)如圖,在平面直角坐標系中,已知點A、B、C的坐標分別為(-1,0),(5,0),(0,2).
(1)求過A、B、C三點的拋物線解析式;
(2)若點P從A點出發(fā),沿x軸正方向以每秒1個單位長度的速度向B點移動,連接PC并延長到點E,使CE=PC,將線段PE繞點P順時針旋轉(zhuǎn)90°得到線段PF,連接FB.若點P運動的時間為t秒,(0≤t≤6)設△PBF的面積為S;
①求S與t的函數(shù)關(guān)系式;
②當t是多少時,△PBF的面積最大,最大面積是多少?
(3)點P在移動的過程中,△PBF能否成為直角三角形?若能,直接寫出點F的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年遼寧省鐵嶺市中考數(shù)學試卷(解析版) 題型:解答題

(2010•鐵嶺)如圖,在平面直角坐標系中,已知點A、B、C的坐標分別為(-1,0),(5,0),(0,2).
(1)求過A、B、C三點的拋物線解析式;
(2)若點P從A點出發(fā),沿x軸正方向以每秒1個單位長度的速度向B點移動,連接PC并延長到點E,使CE=PC,將線段PE繞點P順時針旋轉(zhuǎn)90°得到線段PF,連接FB.若點P運動的時間為t秒,(0≤t≤6)設△PBF的面積為S;
①求S與t的函數(shù)關(guān)系式;
②當t是多少時,△PBF的面積最大,最大面積是多少?
(3)點P在移動的過程中,△PBF能否成為直角三角形?若能,直接寫出點F的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圓》(13)(解析版) 題型:解答題

(2010•鐵嶺)如圖,已知矩形ABCD內(nèi)接于⊙O,BD為⊙O直徑,將△BCD沿BD所在的直線翻折后,得到點C的對應點N仍在⊙O上,BN交AD與點M.若∠AMB=60°,⊙O的半徑是3cm.
(1)求點O到線段ND的距離;
(2)過點A作BN的平行線EF,判斷直線EF與⊙O的位置關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《三角形》(03)(解析版) 題型:選擇題

(2010•鐵嶺)如圖所示,一場暴雨過后,垂直于地面的一棵樹在距地面1米處折斷,樹尖B恰好碰到地面,經(jīng)測量AB=2米,則樹高為( )

A.
B.
C.(+1)米
D.3米

查看答案和解析>>

科目:初中數(shù)學 來源:2010年遼寧省鐵嶺市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•鐵嶺)如圖所示,下列選項中,正六棱柱的左視圖是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案