(2013•工業(yè)園區(qū)模擬)菱形的周長為20cm,其中較小角的余弦值為
4
5
,則該菱形的面積為( 。
分析:首先根據(jù)題意畫出圖形,根據(jù)題意得:菱形ABCD的周長為20cm,cos∠B=
4
5
,由菱形的性質(zhì),可求得AB與BC的長,由三角函數(shù)的性質(zhì),可求得BE的長,又由勾股定理,即可求得AE的長,繼而求得答案.
解答:解:如圖:過點(diǎn)A作AE⊥BC于點(diǎn)E,
根據(jù)題意得:菱形ABCD的周長為20cm,cos∠B=
4
5
,
∴AB=BC=20×
1
4
=5(cm),
在Rt△ABE中,BE=AB•cos∠B=5×
4
5
=4,
∴AE=
AB2-BE2
=3,
∴該菱形的面積為:5×3=15(cm2).
故選A.
點(diǎn)評:此題考查了菱形的性質(zhì)、三角函數(shù)以及勾股定理.此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•工業(yè)園區(qū)二模)某班50名同學(xué)積極響應(yīng)“為雅安地震災(zāi)區(qū)獻(xiàn)愛心捐款活動”,并將所捐款情況統(tǒng)計并制成統(tǒng)計圖,根據(jù)圖中信息,捐款金額的眾數(shù)和中位數(shù)分別是
30,30
30,30
元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•工業(yè)園區(qū)二模)如圖,量角器的直徑與直角三角板ABC的斜邊AB重合,其中AB=8cm,量角器O刻度線的端點(diǎn)N與點(diǎn)A重合,射線CP從CA處出發(fā)沿順時針方向以每秒2度的速度旋轉(zhuǎn),CP與量角器的半圓弧交于點(diǎn)E,第35秒時,點(diǎn)E在量角器上對應(yīng)劃過的
AE
的長度是
28π
9
28π
9
cm.(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•工業(yè)園區(qū)二模)設(shè)函數(shù)y=
3
x
與y=x-2的圖象的交點(diǎn)坐標(biāo)為(a,b),則
1
a
-
1
b
的值為
-
2
3
-
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•工業(yè)園區(qū)二模)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運(yùn)動,并滿足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動,且DE始終經(jīng)過點(diǎn)A,EF與AC交于M點(diǎn).當(dāng)線段AM最短時,重疊部分的面積是
96
25
96
25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•工業(yè)園區(qū)二模)如圖1,平面直角坐標(biāo)系xOy中,拋物線y=
1
2
x2+bx+c
與x軸交于A、B兩點(diǎn),點(diǎn)C是AB的中點(diǎn),CD⊥AB且CD=AB.直線BE與y軸平行,點(diǎn)F是射線BE上的一個動點(diǎn),連接AD、AF、DF.
(1)若點(diǎn)F的坐標(biāo)為(
9
2
,1),AF=
17

①求此拋物線的解析式;
②點(diǎn)P是此拋物線上一個動點(diǎn),點(diǎn)Q在此拋物線的對稱軸上,以點(diǎn)A、F、P、Q為頂點(diǎn)構(gòu)成的四邊形是平行四邊形,請直接寫出點(diǎn)Q的坐標(biāo);
(2)若2b+c=-2,b=-2-t,且AB的長為kt,其中t>0.如圖2,當(dāng)∠DAF=45°時,求k的值和∠DFA的正切值.

查看答案和解析>>

同步練習(xí)冊答案