【題目】在Rt△ABC中,∠ACB=90°,BC=a,AC=b,AB=c.將Rt△ABC繞點O依次旋轉(zhuǎn)90°、180°和270°,構(gòu)成的圖形如圖所示.該圖是我國古代數(shù)學家趙爽制作的“勾股圓方圖”,也被稱作“趙爽弦圖”,它是我國最早對勾股定理證明的記載,也成為了2002年在北京召開的國際數(shù)學家大會的會標設(shè)計的主要依據(jù).
(1)請利用這個圖形證明勾股定理;
(2)請利用這個圖形說明a2+b2≥2ab,并說明等號成立的條件;
(3)請根據(jù)(2)的結(jié)論解決下面的問題:長為x,寬為y的長方形,其周長為8,求當x,y取何值時,該長方形的面積最大?最大面積是多少?
【答案】(1)詳見解析;(2)當且僅當a=b時,等號成立;(3)當且僅當x=y=2時,長方形的面積最大,最大面積是4.
【解析】
1)根據(jù)題意,我們可在圖中找等量關(guān)系,由中間的小正方形的面積等于大正方形的面積減去四個直角三角形的面積,列出等式化簡即可得出勾股定理的表達式.
(2)利用非負數(shù)的性質(zhì)證明即可.
(3)利用(2)中的結(jié)論求得當x,y取何值時,該矩形面積最大以及其最大面積.
解:(1)因為邊長為c的正方形面積為c2,
它也可以看成是由4個直角三角形與1個邊長為(a– b)的小正方形組成的,
它的面積為4×ab+(a– b)2=a2+b2,
所以c2=a2+b2.
(2)∵(a– b)2≥0,
∴a2+b2–2ab≥0,∴a2+b2≥2ab,
當且僅當a=b時,等號成立.
(3)依題意得2(x+y)=8,∴x+y=4,長方形的面積為xy,
由(2)的結(jié)論知2xy≤x2+y2=(x+y)2–2xy,
∴4xy≤(x+y)2,∴xy≤4,
當且僅當x=y=2時,長方形的面積最大,最大面積是4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=8cm,BC=16cm,動點P從點A開始沿AB邊運動,速度為2cm/s;動點Q從點B開始沿BC邊運動,速度為4cm/s;如果P、Q兩動點同時運動,那么何時△QBP與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=4,點E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.
(1)求證:FH=ED;
(2)當AE為何值時,△AEF的面積最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長EF交
AB于G,連接DG,現(xiàn)在有如下4個結(jié)論:①≌;②;③∠GDE=45°;④
DG=DE在以上4個結(jié)論中,正確的共有( )個
A. 1個 B. 2 個 C. 3 個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB 邊的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)若∠F=30°,BF=3,求弧AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,AD是⊙O的切線,BD∥AC,BD交⊙O于點E,連接AE,則下列結(jié)論:①∠DAE=∠BAC;②AE=BE;③AD=AE;④四邊形ACBD是平行四邊形,其中不正確的是__________.(只填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,E為AB的中點.
(1)求證:△ADC∽△ACB;
(2)CE與AD有怎樣的位置關(guān)系?試說明理由;
(3)若AD=4,AB=6,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,BD=DF,
(1)證明:CF=EB.
(2)證明:AB=AF+2EB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com