某商場購進一批單價為16元的日用品.若按每件23元的價格銷售,每月能賣出270件;若按每件28元的價格銷售,每月能賣出120件;若規(guī)定售價不得低于23元,假定每月銷售件數(shù)y(件)與價格x(元/件)之間滿足一次函數(shù).
(1)試求y與x之間的函數(shù)關系式.
(2)在商品不積壓且不考慮其他因素的條件下,銷售價格定為多少時,才能使每月的毛利潤w最大?每月的最大毛利潤為多少?
(3)若要使某月的毛利潤為1800元,售價應定為多少元?
(1)y=-30x+960;(2)24元,1920元;(3)26元

試題分析:(1)設y=kx+b,把(23,270)、(28,120)代入根據(jù)待定系數(shù)法即可求得結(jié)果;
(2)根據(jù)總利潤=單利潤×銷售量即可得到函數(shù)關系式,再根據(jù)二次函數(shù)的性質(zhì)即可求得結(jié)果;
(3)根據(jù)毛利潤為1800元即可列方程求解,最后注意解的取舍.
(1)設y=kx+b,把(23,270)、(28,120)代入解得y=-30x+960;
(2)w="(x-16)(-30x+960)" =-30(x-24)2+1920,當x=24時,w有最大值1920 
∴銷售價格定為24元時,才能使每月的毛利潤最大,最大毛利潤為1920元;
(3)當時,即
解得(舍去), 
∴某月的毛利潤為1800元,售價應定為26元.
點評:解題的關鍵讀懂題意,找到等量關系,正確列出二次函數(shù)和一元二次方程,最后注意對解的取舍.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)y=2(x-5)2 +1圖象的頂點是          。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:拋物線的圖象經(jīng)過原點,且開口向上. 確定m的值;
求此拋物線的頂點坐標;
當x取什么值時,y隨x的增大而增大?
當x取什么值時,y<0?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

國內(nèi)某企業(yè)生產(chǎn)一種隔熱瓦(其厚度忽略不計),形狀近似為正方形,邊長x(cm)在5~25之間(包括5和25),每片隔熱瓦的成本價(元)與它的面積(cm2)成正比例.出廠價P(元)與它的邊長x(cm)滿足一次函數(shù),圖象如圖所示.

(1)已知出廠一張邊長為15cm的隔熱瓦,獲得的利潤是55元(利潤=出廠價-成本價).
①求每片的隔熱瓦利潤Q(元)與邊長x(cm)之間滿足的函數(shù)關系式;
②當邊長為多少時,出廠的隔熱瓦能獲得最大利潤?最大利潤是多少?
(2)在(1)的基礎上,如果廠家繼續(xù)擴大產(chǎn)品規(guī)模,從5cm~25cm擴大到5cm~60cm.由于20cm~40cm的隔熱瓦屬于國家科技項目,國家對這部分產(chǎn)品進行貼補.每片隔熱瓦貼補W(元)與它的邊長x(cm)滿足:.在推廣20cm~40cm的隔熱瓦時,廠家進行市場營銷,這種規(guī)格的隔熱瓦廣告費為每片10元.要使每片隔熱瓦的利潤不低于60.4元,求5cm~60cm的隔熱瓦邊長x的取值范圍(x取整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

請你寫出一個拋物線的表達式,此拋物線滿足對稱軸是軸,且在軸的左側(cè)部分是上升的,那么這個拋物線表達式可以是                      

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論錯誤的是
A.a(chǎn)bc>0 B.a(chǎn)-b+c=0
C.a(chǎn)+b+c>0 D.4a-2b+c>0

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)y=3x2的圖像不動,把x軸向上平移2個單位長度,那么在新的坐標系下此拋物線的解析式是___________________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)的圖象與x軸交于(,0)和(,0),其中,與軸交于正半軸上一點.下列結(jié)論:①;②;③;④.其中所有正確結(jié)論的序號是_______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示的二次函數(shù)的圖象中,劉敏同學觀察得出了下面四條信息:

(1);(2);(3);(4),你認為其中錯誤的有( )
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案