已知變量y與x成反比例,并且當(dāng)x=2時(shí),y=-3.
(1)求y與x的函數(shù)關(guān)系式;
(2)求當(dāng)y=2時(shí)x的值;
(3)在直角坐標(biāo)系內(nèi)畫出(1)小題中函數(shù)圖象的草圖.

解:(1)∵變量y與x成反比例,
∴設(shè)y=,
又∵當(dāng)x=2時(shí),y=-3,
∴k=xy=2×(-3)=-6,
∴反比例函數(shù)的解析式為:y=-;

(2)把y=2代入反比例函數(shù)的解析式y(tǒng)=-,得:
2=-,x=-3;

(3)函數(shù)圖象如下:

 x-3-2 -1
 y 2 3 6-6-3-2


分析:(1)根據(jù)y與x成反比例,當(dāng)x=2時(shí),y=-3求出反比例函數(shù)的解析式;
(2)把y=2代入(1)中所求反比例函數(shù)的解析式即可求出x的值;
(3)用列表法先求出函數(shù)圖象上對(duì)應(yīng)的點(diǎn),再描出各點(diǎn),畫出函數(shù)圖象即可.
點(diǎn)評(píng):本題考查的是用待定系數(shù)法反比例函數(shù)的解析式及畫反比例函數(shù)圖象的方法,是中學(xué)階段的重點(diǎn)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知變量y與x成反比例函數(shù)關(guān)系,并且當(dāng)x=2時(shí),y=-3.
(1)求y與x之間的函數(shù)關(guān)系式;(2)求當(dāng)y=2時(shí),x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知變量y與x成反比例,并且當(dāng)x=2時(shí),y=-3.
(1)求y與x的函數(shù)關(guān)系式;
(2)求當(dāng)y=2時(shí)x的值;
(3)在直角坐標(biāo)系內(nèi)畫出(1)小題中函數(shù)圖象的草圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知變量y與x成反比例,且x=1時(shí),y=5,則y與x之間的函數(shù)關(guān)系式是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知變量y與x成反比例,它的圖象過點(diǎn)A(-2,3).求:
(1)反比例函數(shù)解析式
(2)從A(-2,3)向x軸和y軸分別作垂線AB、AC,垂足分別為B、C,則矩形OBAC的面積為
6
6

(3)當(dāng)A點(diǎn)的橫坐標(biāo)為-4時(shí),作AB1、AC1分別垂直于x軸、y軸,B1、C1為垂足,則所得矩形OB1AC1的面積是
6
6

(4)將A點(diǎn)在圖象上任意移動(dòng)到點(diǎn)A′,作A′B′、A′C′分別垂直于x軸、y軸,B′、C′為垂足,則所得矩形OB′A′C′的面積是
6
6

由此,你可以結(jié)合上述信息得出結(jié)論是:
|K|
|K|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知變量y與x成反比例,當(dāng)x=3時(shí),y=-6.
求:(1)y與x之間的函數(shù)關(guān)系式;
(2)當(dāng) y=3時(shí),x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案