精英家教網 > 初中數學 > 題目詳情
16、如圖,在等腰Rt△ABC中,∠A=90°,AC=9,點O在AC上,且AO=2,點P是AB上一動點,連接OP將線段OP繞O逆時針旋轉90°得到線段OD,要使點D恰好落在BC上,則AP的長度等于
5
分析:過點D作DE⊥AC于E,則△DEO≌△OAP,根據全等三角形及等腰直角三角形的性質即可求解.
解答:解:過點D作DE⊥AC于E,則△DEO≌△OAP,
∴DE=OA=CE=2,
∴AP=OE=9-4=5.
點評:本題考查旋轉的性質和等腰三角形,直角三角形的性質以及全等三角形性質的運用.旋轉變化前后,對應點到旋轉中心的距離相等以及每一對對應點與旋轉中心連線所構成的旋轉角相等.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB邊上的中點,點D,E分別在AC,BC邊上運動,且保持AD=CE.連接DE,DF,EF.在此運動變化的過程中,下列結論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形,
③DE長度的最小值為4;
④四邊形CDFE的面積保持不變;
⑤△CDE面積的最大值為8.
其中正確的結論是( 。
A、①②③B、①④⑤C、①③④D、③④⑤

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB邊上的中點,點D、E分別在AC、BC邊精英家教網上運動,且保持AD=CE.連接DE、DF、EF.
①求證:△DFE是等腰直角三角形;
②在此運動變化的過程中,四邊形CDFE的面積是否保持不變?試說明理由.
③求△CDE面積的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,則
ADDC
=
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在等腰Rt△ABC中,∠ACB=90°,CA=CB,點M、N是AB上任意兩點,且∠MCN=45°,點T為AB的中點.以下結論:①AB=
2
AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正確結論的序號是( 。
A、①②③④B、只有①②③
C、只有①③④D、只有②④

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,AC=8
2
,F是AB邊上的中點,點D、E分別在AC、BC邊上運動,且保持AD=CE.連接DE、DF、EF.
(1)在此運動變化的過程中,△DFE是
等腰直角
等腰直角
三角形;
(2)若AD=
2
,求△DFE的面積.

查看答案和解析>>

同步練習冊答案