如圖所示,已知:拋物線c1經(jīng)過A、B、C三點(diǎn),頂點(diǎn)為D,且與x軸的另一個(gè)交點(diǎn)為E.

(1)求拋物線c1的解析式.

(2)求四邊形ABDE的面積.

(3)△AOB與△BDE是否相似?如果相似,請(qǐng)予以證明;如果不相似,請(qǐng)說明理由.

(4)設(shè)拋物線c1的對(duì)稱軸與x軸交于點(diǎn)F;另一條拋物線c2經(jīng)過點(diǎn)E(拋物線c2與拋物線c1不重合),且頂點(diǎn)為M(a,b),對(duì)稱軸與x軸相交于點(diǎn)G,且以M、G、E為頂點(diǎn)的三角形與以D、E、F為頂點(diǎn)的三角形全等.求a、b的值(只寫出結(jié)果,不必寫出解答過程).

答案:
解析:

  (1)y=-x2+2x+3;

  (2)S四邊形ABDE=S△ABO+S△DEF+S梯形BOFD=9(平方單位);

  (3)過B作BK⊥DF于K,則BK=OF=1,DK=1.BD=,DE=.AB=,BE=  易證△AOB∽△BDE.

  (4)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知:一拋物線形拱門,其地面寬度AB=18m,小明站在門內(nèi),在離門腳B點(diǎn)1m遠(yuǎn)的點(diǎn)D處精英家教網(wǎng),垂直地面立起一根1.7m長的木桿,其頂端恰好頂在拋物線形門上C處,建立如圖所示的坐標(biāo)系.
(1)求出拱門所在拋物線的解析式;
(2)求出該大門的高度OP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)一塊邊緣呈拋物線型的鐵片如圖放置,測得AB=20cm,拋物線的頂點(diǎn)到AB邊的距離為25cm.現(xiàn)要沿AB邊向上依次截取寬度均為4cm的矩形鐵皮,如圖所示.已知截得的鐵皮中有一塊是正方形,則這塊正方形鐵皮是( 。
A、第七塊B、第六塊C、第五塊D、第四塊

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題:如圖所示,已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
(1)此橋拱線所在拋物線的解析式.
(2)橋邊有一浮在水面部分高4m,最寬處12
2
m的魚船,試探索此船能否開到橋下?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知拋物y=ax2+bx+c與x軸負(fù)半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OB=
3
,CB=2
3
,∠CAO=30°,求拋物線的解析式和它的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知:一拋物線形拱門,其地面寬度AB=18m,小明站在門內(nèi),在離門腳B點(diǎn)1m遠(yuǎn)的點(diǎn)D處,垂直地面立起一根1.7m長的木桿,其頂端恰好頂在拋物線形門上C處,建立如圖所示的坐標(biāo)系.
(1)求出拱門所在拋物線的解析式;
(2)求出該大門的高度OP.

查看答案和解析>>

同步練習(xí)冊(cè)答案