如圖,D,E分別是△ABC邊AB,BC上的點,AD=2BD,BE=CE,設△ADF的面積為S1,△CEF的面積為S2,若S△ABC=6,則S1-S2的值為________.

1
分析:根據(jù)等底等高的三角形的面積相等求出△AEC的面積,再根據(jù)等高的三角形的面積的比等于底邊的比求出△ACD的面積,然后根據(jù)S1-S2=S△ACD-S△ACE計算即可得解.
解答:∵BE=CE,
∴S△ACE=S△ABC=×6=3,
∵AD=2BD,
∴S△ACD=S△ABC=×6=4,
∴S1-S2=S△ACD-S△ACE=4-3=1.
故答案為:1.
點評:本題考查了三角形的面積,主要利用了等底等高的三角形的面積相等,等高的三角形的面積的比等于底邊的比,需熟記.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

14、如圖,E、F分別是等腰△ABC的腰AB、AC的中點.用尺規(guī)在BC邊上求作一點M,使四邊形AEMF為菱形.
(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:AB、AC分別是⊙O的直徑和弦,D為弧AC上一點,DE⊥AB于點H,交⊙O于點E,交AC于點F.P為ED延長線上一點,連PC.
(1)若PC與⊙O相切,判斷△PCF的形狀,并證明.
(2)若D為弧AC的中點,且
BC
AB
=
3
5
,DH=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB和AC分別是⊙O的直徑和弦,OD⊥AC于D點,若OA=4,∠A=30°,則BD等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,E、F分別是正方形ABCD邊BC、AD上的點,且BE=DF
求證:(1)△ABE≌△CDF;
      (2)AE∥CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

桌上放著一個圓柱和一個長方體,如圖(1),請說出下列三幅圖(如圖(2))分別是從哪個方向看到的.

查看答案和解析>>

同步練習冊答案