【題目】羅平、昆明兩地相距240千米,甲車從羅平出發(fā)勻速開往昆明,乙車同時從昆明出發(fā)勻速開往羅平,兩車相遇時距羅平90千米,已知乙車每小時比甲車多行駛30千米,求甲、乙兩車的速度.

【答案】解:設甲車的速度為xkm/h,則乙車的速度為(x+30)km/h. 由題意 = ,
解得x=45,
經(jīng)檢驗x=45是原方程的解,且符合題意,
x+30=75,
答:甲車的速度為45km/h,則乙車的速度為75km/h.
【解析】設甲車的速度為xkm/h,則乙車的速度為(x+30)km/h.根據(jù)時間相等列出方程即可解決問題.
【考點精析】本題主要考查了分式方程的應用的相關知識點,需要掌握列分式方程解應用題的步驟:審題、設未知數(shù)、找相等關系列方程、解方程并驗根、寫出答案(要有單位)才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一副撲克牌中取出的兩組牌,分別是紅桃1,2,3和方塊1,2,3,將它們的背面朝上分別重新洗牌后,再從兩組牌中各摸出一張.
(1)用列表或樹狀圖的方法表示此游戲所有可能出現(xiàn)的結(jié)果;
(2)求摸出的兩張牌的牌面數(shù)字之和不小于4的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是邊長為4個等邊三角形,D為AB邊的中點,以CD為直徑畫圓,則圖中陰影部分的面積為(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點,與y軸交于點C,直線y=x﹣2經(jīng)過A、C兩點,且AB=2.

(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒;設s= ,當t為何值時,s有最小值,并求出最小值.

(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算: ﹣|2 ﹣9tan30°|+( 1﹣(1﹣π)0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)為了解員工給災區(qū)“愛心捐款”的情況,隨機抽取部分員工的捐款金額整理繪制成如圖所示的直方圖,根據(jù)圖中信息,下列結(jié)論錯誤的是( )

A.樣本中位數(shù)是200元
B.樣本容量是20
C.該企業(yè)員工捐款金額的平均數(shù)是180元
D.該企業(yè)員工最大捐款金額是500元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.

(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某日,正在我國南海海域作業(yè)的一艘大型漁船突然發(fā)生險情,相關部門接到求救信號后,立即調(diào)遣一架直升飛機和一艘剛在南海巡航的漁政船前往救援.當飛機到達距離海面3000米的高空C處,測得A處漁政船的俯角為60°,測得B處發(fā)生險情漁船的俯角為30°,請問:此時漁政船和漁船相距多遠?(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).

(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.

查看答案和解析>>

同步練習冊答案