25、(1)當(dāng)a=-2,b=1時(shí),求兩個代數(shù)式(a-b)2與a2-2ab+b2的值;
(2)當(dāng)a=2,b=-3時(shí),再求以上兩個代數(shù)式的值;
(3)你能從上面的計(jì)算結(jié)果中,發(fā)現(xiàn)上面有什么結(jié)論?結(jié)論是:
(a-b)2=a2-2ab+b2
;
(4)利用你發(fā)現(xiàn)的結(jié)論,求:20102-4020×2009+20092的值.
分析:(1)、(2)只需將a、b的值代入求得結(jié)果;
(3)根據(jù)前兩問中代數(shù)式的求值可得兩個代數(shù)式相等;
(4)此小題只需根據(jù)(a-b)2=a2-2ab+b2對20102-4020×2009+20092的變形為(a-b)2的形式較為簡單.
解答:解:(1)當(dāng)a=-2,b=1時(shí),(a-b)2=(-2-1)2=9;
a2-2ab+b2=(-2)2-2×(-2)×1+12=9;

(2)當(dāng)a=2,b=-3時(shí),(a-b)2=[2-(-3)]2=25;
a2-2ab+b2=22-2×2×(-3)+(-3)2=25;

(3)結(jié)論是:(a-b)2=a2-2ab+b2或a2-2ab+b2=(a-b)2

(4)20102-4020×2009+20092,
=20102-2×2010×2009+20092
=(2010-2009)2,
=1.
點(diǎn)評:本題考查了代數(shù)式的求值,由求得的值得到兩個代數(shù)式的關(guān)系并學(xué)會靈活運(yùn)用是解決此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

101、已知二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù)),x與y的部分對應(yīng)值如下表,則當(dāng)x滿足的條件是
0或2
時(shí),y=0;當(dāng)x滿足的條件是
0<x<2
時(shí),y>0.
x -2 -1 0 1 2 3
y -6 -6 0 2 0 -6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D.點(diǎn)P、Q分別從B、C兩點(diǎn)同時(shí)出發(fā),其中點(diǎn)P沿BC向終點(diǎn)C運(yùn)動,速度為1cm/s;點(diǎn)Q沿CA、AB向終點(diǎn)B運(yùn)動,速度為2cm/s,設(shè)它們運(yùn)動的時(shí)間為x(s).
(1)當(dāng)x=
 
時(shí),PQ⊥AC,x=
 
時(shí),PQ⊥AB;
(2)設(shè)△PQD的面積為y(cm2),當(dāng)0<x<2時(shí),求y與x的函數(shù)關(guān)系式為
 
;
(3)當(dāng)0<x<2時(shí),求證:AD平分△PQD的面積;
(4)探索以PQ為直徑的圓與AC的位置關(guān)系,請寫出相應(yīng)位置關(guān)系的x的取值范圍(不要求寫出過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某工廠有一水塔裝有兩個相同的進(jìn)水管與一個出水管(每小時(shí)每個進(jìn)水管的進(jìn)水量與出水管的出水量保持不變).工廠根據(jù)實(shí)際情況安裝了自動控制系統(tǒng)來控制進(jìn)水管與出水管開放的時(shí)間.設(shè)置的程序?yàn)椋好刻?點(diǎn)至6點(diǎn),同時(shí)打開兩個進(jìn)水管;6點(diǎn)至12點(diǎn),關(guān)閉一個進(jìn)水管同時(shí)打開出水管;12點(diǎn)至24點(diǎn),關(guān)閉另一個進(jìn)精英家教網(wǎng)水管.如圖表示水塔中的儲水量Q(米3)與時(shí)間t(小時(shí))之間的函數(shù)圖象.
(1)根據(jù)函數(shù)的圖象回答從0點(diǎn)至12點(diǎn),水塔中每小時(shí)增加的水量是多少米3?
(2)請你求出當(dāng)12≤t≤24時(shí),Q與t之間的函數(shù)的函數(shù)關(guān)系式,并畫出函數(shù)的圖象;
(3)請你利用所學(xué)過的數(shù)學(xué)知識,回答:從第一天0點(diǎn)起,第幾天何時(shí)水塔中的儲水量首次達(dá)到425米3?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是⊙O的直徑,BC是⊙O的弦,⊙O的割線PDE垂直AB于點(diǎn)F,交BC于點(diǎn)G,連接PC,∠BAC=∠BCP,求解下列問題:
(1)求證:CP是⊙O的切線.
(2)當(dāng)∠ABC=30°,BG=2
3
,CG=4
3
時(shí),求以PD、PE的長為兩根的一元二次方程.
(3)若(1)的條件不變,當(dāng)點(diǎn)C在劣弧AD上運(yùn)動時(shí),應(yīng)再具備什么條件可使結(jié)論BG2=BF•BO成立精英家教網(wǎng)?試寫出你的猜想,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

當(dāng)a>0,b<0,c>0時(shí),下列圖象有可能是拋物線y=ax2+bx+c的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案