如圖,在四邊形ABCD中,∠ACB=∠BAD=105°,∠ABC=∠ADC=45°,若AB=2,則CD的長(zhǎng)為_(kāi)_______.

2
分析:先過(guò)A、C作CD和AB邊上是高,垂足分別是E、F,并設(shè)BF=x,由于CF⊥AB,∠ABC=45°,易知△BCF是等腰直角三角形,那么CF=BF=x,再結(jié)合∠ACB=105°,易求∠ACF=60°,那么∠CAF=30°,利用直角三角形30°角所對(duì)的邊等于斜邊的一半,可得AC=2x,可知AB=x+x,同理易求CD=x+x,那么CD=AB,而AB=2,那么CD=2.
解答:解:如右圖所示,
分別過(guò)A、C作CD和AB邊上是高,垂足分別是E、F,
設(shè)BF=x,
∵CF⊥AB,∠ABC=45°,
∴∠BCF=∠ABC=45°,
∴△BCF是等腰直角三角形,
∴CF=BF=x,
∵∠ACB=105°,
∴∠ACF=105°-45°=60°,
在Rt△ACF中,∠CAF=30°,那么AC=2x,AF=x,
∴AB=x+x,
同理可得△ADE是等腰直角三角形,∠FAC=105°-30°-45°=30°,
在Rt△AEC中,CE=x,AE=x,
∴CD=x+x,
∴CD=AB=2.
故答案是2.
點(diǎn)評(píng):本題考查了勾股定理、等腰直角三角形的判定和性質(zhì)、含有30°角的直角三角形的性質(zhì),解題的關(guān)鍵是作輔助線AE、CF,構(gòu)造直角三角形,求出相應(yīng)角的度數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案