如圖,AB是⊙O的直徑,點(diǎn)D、T是圓上的兩點(diǎn),且AT平分∠BAD,過點(diǎn)T作AD延長線的垂線PQ,垂足為C。若⊙O的半徑為2,AT=2,則圖中陰影部分的面積是        。

 

【答案】

 

【解析】

試題分析:連接OT、OD、過O作OM⊥AD于M,得到矩形OMCT,求出OM,求出∠OAM,求出∠AOT,求出OT∥AC,得出PC是圓的切線,得出等邊三角形AOD,求出∠AOD,求出∠DOT,求出∠DTC=∠CAT=30°,求出DC,求出梯形OTCD的面積和扇形OTD的面積.相減即可求出答案.

連接OT、OD、DT,過O作OM⊥AD于M

∵OA=OT,AT平分∠BAC,

∴∠OTA=∠OAT,∠BAT=∠CAT,

∴∠OTA=∠CAT,

∴OT∥AC,

∵PC⊥AC,

∴OT⊥PC,

∵OT為半徑,

∴PC是⊙O的切線,

∵OM⊥AC,AC⊥PC,OT⊥PC,

∴∠OMC=∠MCT=∠OTC=90°,

∴四邊形OMCT是矩形,

∴OM=TC=,

∵OA=2,

∴sin∠OAM=,

∴∠OAM=60°,

∴∠AOM=30°

∵AC∥OT,

∴∠AOT=180°-∠OAM=120°,

∵∠OAM=60°,OA=OD,

∴△OAD是等邊三角形,

∴∠AOD=60°,

∴∠TOD=120°-60°=60°,

∵PC切⊙O于T,

∴∠DTC=∠CAT=∠BAC=30°,

∴tan30°=,

∴DC=1,

考點(diǎn):切線的性質(zhì)和判定,解直角三角形,矩形的性質(zhì)和判定,勾股定理,扇形的面積,梯形的性質(zhì)

點(diǎn)評(píng):本題綜合性比較強(qiáng),有一定的難度,主要考查學(xué)生運(yùn)用性質(zhì)進(jìn)行推理和計(jì)算的能力.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時(shí),電線桿的影子BC的長度為4米,則電線桿AB的高度為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請(qǐng)你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計(jì),π取3.1416)
(1)計(jì)算出弧AB所對(duì)的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計(jì)算出遮雨罩一個(gè)側(cè)面的面積;(精確到1cm2
(3)制做這個(gè)遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時(shí),電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊(cè)答案