如圖,在⊙O中,弦AB、CD于點E,且
AB
=
CD
.求證:AE=DE.
分析:連接AD,由于
AB
=
CD
,所以AC=BD,故∠BAD=∠CDA,所以AE=BE.
解答:解:方法一:連接AD,
AB
=
CD

∴AC=BD,
∴∠BAD=∠CDA,
∴AE=BE.
方法二:∵
AB
=
CD
,
AB
-
BC
=
CD
-
BC
AC
=
BD
,
∴AC=BD
在△ACE與△DBE中,
∠CAB=∠CDB
AC=BD
∠ACD=∠ABD
,
∴△ACE≌△DBE(ASA),
∴AE=DE.
點評:本題考查的是圓心角、弧、弦的關(guān)系及等腰三角形的判定與性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出等腰三角形是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在⊙O中,弦AD=BC.求證:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,在⊙O中,弦BC∥半徑OA,AC與OB相交于M,∠C=20°,則∠AMB的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙M中,弦AB所對的圓心角為120度,已知圓的半徑為2cm,并建立如圖所示的直角坐精英家教網(wǎng)標(biāo)系.
(1)求圓心M的坐標(biāo);
(2)求經(jīng)過A,B,C三點的拋物線的解析式;
(3)設(shè)點P是⊙M上的一個動點,當(dāng)△PAB為Rt△PAB時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙O中,弦AB=BC=CD,且∠ABC=140°,則∠AED=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙O中,弦AB與CD相交于點P,連接AC、DB.
(1)求證:△PAC∽△PDB;
(2)當(dāng)
AC
DB
為何值時,
S△PAC
S△PDB
=4?

查看答案和解析>>

同步練習(xí)冊答案