【題目】如圖ABC內(nèi)接于O,,BDO的直徑,點PBD延長線上一點,且PAO的切線.

1)求證:;

2)若,求O的直徑.

【答案】1)證明見解析;(2O的直徑為

【解析】

1)連接OA,由圓周角定理可得,則∠AOP=60°,∠OBA=30°;再根據(jù)切線的性質(zhì)得到∠OA P=90°,則可計算出∠OPA=30°,即∠OBA=OPA=30°,最后運用等角對等邊即可證明;

2)設(shè)⊙O的半徑為r,再利用含30度的直角三角形的性質(zhì)可得PD+r=2r求得r,即可求得O的直徑.

證明:(1)連接OA

,

,

PAO的切線,

,

,

;

2)設(shè)⊙O的半徑為r

中,

PD+r=2r

r=,

∴⊙O的直徑為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學活動課上,張老師引導(dǎo)同學進行如下探究:如圖1,將長為的鉛筆斜靠在垂直于水平桌面的直尺的邊沿上,一端固定在桌面上,圖2是示意圖.

活動一

如圖3,將鉛筆繞端點順時針旋轉(zhuǎn),交于點,當旋轉(zhuǎn)至水平位置時,鉛筆的中點與點重合.

數(shù)學思考

1)設(shè),點的距離

①用含的代數(shù)式表示:的長是_________的長是________;

的函數(shù)關(guān)系式是_____________,自變量的取值范圍是____________

活動二

2)①列表:根據(jù)(1)中所求函數(shù)關(guān)系式計算并補全表格.

6

5

4

3.5

3

2.5

2

1

0.5

0

0

0.55

1.2

1.58

1.0

2.47

3

4.29

5.08

②描點:根據(jù)表中數(shù)值,描出①中剩余的兩個點

③連線:在平面直角坐標系中,請用平滑的曲線畫出該函數(shù)的圖象.

數(shù)學思考

3)請你結(jié)合函數(shù)的圖象,寫出該函數(shù)的兩條性質(zhì)或結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,點OBD上,以O為圓心的圓恰好經(jīng)過A、BC三點,⊙OBDE,交ADF,且,連接OA、OF

(1)求證:四邊形ABCD是菱形;

(2)若∠AOF3FOE,求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線為常數(shù),且)與軸從左至右依次交于A,B兩點,與軸交于點C,經(jīng)過點B的直線與拋物線的另一交點為D,點D的橫坐標為-4

1)求直線的函數(shù)解析式;

2)求拋物線的函數(shù)解析式;

3)分別求出tanABCtanBAC的值;

4)在第一象限的拋物線上是否存在點P,使得以A,B,P為頂點的三角形與△ABC相似?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形的邊長為,且其三個頂點均在拋物線上.

1)求拋物線的解析式;

2)若過原點的直線與直線分別交拋物線于點、,

①當時,試求的面積;

②試證明:不論實數(shù)取何值,直線總是經(jīng)過一定點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點坐標A1,3),與x軸的一個交點B40),直線y2=mx+nm≠0)與拋物線交于A,B兩點,下列結(jié)論:

①2a+b=0②abc0;方程ax2+bx+c=3有兩個相等的實數(shù)根;拋物線與x軸的另一個交點是(﹣1,0);1x4時,有y2y1,

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一只拉桿式旅行箱(圖1),其側(cè)面示意圖如圖2所示,已知箱體長AB50cm,拉桿BC的伸長距離最大時可達35cm,點AB、C在同一條直線上,在箱體底端裝有圓形的滾筒⊙A,⊙A與水平地面切于點D,在拉桿伸長至最大的情況下,當點B距離水平地面38cm時,點C到水平面的距離CE59cm.設(shè)AFMN

1)求⊙A的半徑長;

2)當人的手自然下垂拉旅行箱時,人感覺較為舒服,某人將手自然下垂在C端拉旅行箱時,CE80cm,∠CAF64°.求此時拉桿BC的伸長距離.

(精確到1cm,參考數(shù)據(jù):sin64°≈0.90,cos64°≈0.39,tan64°≈2.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為6的菱形ABCD中,對角線AC,BD交點與點O,點P是△ADO的重心.

1)當菱形ABCD是正方形時,則PA=________,PD=__________,PO=_________.

2)線段PA,PD,PO中是否存在長度保持不變的線段,若存在,請求出該線段的長度,若不存在,請說明理由.

3)求線段PDDO滿足的等量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某部門為新的生產(chǎn)線研發(fā)了一款機器人,為了解它的操作技能情況,在相同條件下與人工操作進行了抽樣對比.過程如下,請補充完整.收集數(shù)據(jù)對同一個生產(chǎn)動作,機器人和人工各操作10次,測試成績(十分制)如下:

整理、描述數(shù)據(jù)按如下分段整理、描述這兩組樣本數(shù)據(jù):

(說明:成績在9.0分及以上為操作技能優(yōu)秀,8≤r<9分為操作技能良好,6≤r<8分為操作技能合格,6.0分以下為操作技能不合格)

分析數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)和方差如下表所示:

得出結(jié)論:

(1)請結(jié)合數(shù)據(jù)分析寫出機器人在操作技能方面兩條優(yōu)點:

(2)如果生產(chǎn)出一個產(chǎn)品,需要完成同樣的操作200次,估計機器人生產(chǎn)這個產(chǎn)品達到操作技能優(yōu)秀的次數(shù)為多少?

查看答案和解析>>

同步練習冊答案