(2007•孝感)將一正方形按如圖方式分成n個全等矩形,上、下各橫排兩個,中間豎排若干個,則n的值為( )

A.12
B.10
C.8
D.6
【答案】分析:由圖中可知:2個矩形的長=一個矩形的長+2個矩形的寬,那么1個矩形的長=2個矩形的寬,所以可知2個矩形的長=4個矩形的寬,那么中間豎排的矩形的個數(shù)為4.則可求矩形的總個數(shù).
解答:解:根據(jù)題意可知
2個矩形的長=4個矩形的寬,中間豎排的矩形的個數(shù)為4
則矩形的總個數(shù)為2+4+2=8.
故選C.
點評:本題是一道找規(guī)律的題目,要求學生通過觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應用發(fā)現(xiàn)的規(guī)律解決問題.解決本題的難點在于找到中間矩形的個數(shù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《圖形的對稱》(04)(解析版) 題型:解答題

(2007•孝感)在我們學習過的數(shù)學教科書中,有一個數(shù)學活動,其具體操作過程是:
第一步:對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開(如圖1);
第二步:再一次折疊紙片,使點A落在EF上,并使折痕經(jīng)過點B,得到折痕BM,同時得到線段BN(如圖2).
請解答以下問題:
(1)如圖2,若延長MN交BC于P,△BMP是什么三角形?請證明你的結論;
(2)在圖2中,若AB=a,BC=b,a、b滿足什么關系,才能在矩形紙片ABCD上剪出符合(1)中結論的三角形紙片BMP?
(3)設矩形ABCD的邊AB=2,BC=4,并建立如圖3所示的直角坐標系.設直線BM′為y=kx,當∠M′BC=60°時,求k的值.此時,將△ABM′沿BM′折疊,點A是否落在EF上(E、F分別為AB、CD中點),為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《三角形》(16)(解析版) 題型:解答題

(2007•孝感)在我們學習過的數(shù)學教科書中,有一個數(shù)學活動,其具體操作過程是:
第一步:對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開(如圖1);
第二步:再一次折疊紙片,使點A落在EF上,并使折痕經(jīng)過點B,得到折痕BM,同時得到線段BN(如圖2).
請解答以下問題:
(1)如圖2,若延長MN交BC于P,△BMP是什么三角形?請證明你的結論;
(2)在圖2中,若AB=a,BC=b,a、b滿足什么關系,才能在矩形紙片ABCD上剪出符合(1)中結論的三角形紙片BMP?
(3)設矩形ABCD的邊AB=2,BC=4,并建立如圖3所示的直角坐標系.設直線BM′為y=kx,當∠M′BC=60°時,求k的值.此時,將△ABM′沿BM′折疊,點A是否落在EF上(E、F分別為AB、CD中點),為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:2007年湖北省孝感市中考數(shù)學試卷(解析版) 題型:解答題

(2007•孝感)在我們學習過的數(shù)學教科書中,有一個數(shù)學活動,其具體操作過程是:
第一步:對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開(如圖1);
第二步:再一次折疊紙片,使點A落在EF上,并使折痕經(jīng)過點B,得到折痕BM,同時得到線段BN(如圖2).
請解答以下問題:
(1)如圖2,若延長MN交BC于P,△BMP是什么三角形?請證明你的結論;
(2)在圖2中,若AB=a,BC=b,a、b滿足什么關系,才能在矩形紙片ABCD上剪出符合(1)中結論的三角形紙片BMP?
(3)設矩形ABCD的邊AB=2,BC=4,并建立如圖3所示的直角坐標系.設直線BM′為y=kx,當∠M′BC=60°時,求k的值.此時,將△ABM′沿BM′折疊,點A是否落在EF上(E、F分別為AB、CD中點),為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《代數(shù)式》(01)(解析版) 題型:選擇題

(2007•孝感)將一正方形按如圖方式分成n個全等矩形,上、下各橫排兩個,中間豎排若干個,則n的值為( )

A.12
B.10
C.8
D.6

查看答案和解析>>

同步練習冊答案