如圖所示,在直角坐標(biāo)系xOy中,一次函數(shù)y1=k1x+b (k1≠0)的圖象與反比例函數(shù)y2=
k 2
x
的圖象交于A(1,4),B(3,m)兩點(diǎn).
(1)試確定上述反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)求△AOB的面積;
(3)x取何值時(shí),k1x+b>
k 2
x
分析:(1)(1,4)代入y=
k2
x
,易求k2,從而可求反比例函數(shù)解析式,再把B點(diǎn)坐標(biāo)代入反比例函數(shù)解析式,易求m,然后把A、B兩點(diǎn)坐標(biāo)代入一次函數(shù)解析式,易得關(guān)于k1、b的二元一次方程,解可求k1、b,從而可求一次函數(shù)解析式;
(2)設(shè)直線AB與x軸交于點(diǎn)C,再根據(jù)一次函數(shù)解析式,可求C點(diǎn)坐標(biāo),再根據(jù)分割法可求△AOB的面積;
(3)觀察可知當(dāng)x<0 或1<x<3 時(shí),k1x+b>
k 2
x
解答:解:(1)把(1,4)代入y=
k2
x
,得
k2=4,
∴反比例函數(shù)的解析式是y=
4
x
,
當(dāng)x=3時(shí),y=
4
3
,
∴m=
4
3

把(1,4)、(3,
4
3
)代入y1=k1x+b中,得
k1+b=4
3k1+b=
4
3
,
解得
k1=-
4
3
b=
16
3

∴一次函數(shù)的解析式是y=-
4
3
x+
16
3
;
(2)設(shè)直線AB與x軸交于點(diǎn)C,
當(dāng)y=0時(shí),x=4,
故C點(diǎn)坐標(biāo)是(4,0),
∴S△AOB=S△AOC-S△BOC=
1
2
×4×4-
1
2
×4×
4
3
=8-
8
3
=
16
3
;
(3)在第一象限,當(dāng)1<x<3時(shí),k1x+b>
k 2
x
;
還可觀察可知,當(dāng)x<0時(shí),k1x+b>
k 2
x

∴x<0 或1<x<3.
點(diǎn)評:本題考查看待定系數(shù)法求函數(shù)解析式、一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,解題的關(guān)鍵是先求出反比例函數(shù),進(jìn)而求B點(diǎn)坐標(biāo),然后求出一次函數(shù)的解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在直角坐標(biāo)平面內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)B在第一象限內(nèi),BO=5,精英家教網(wǎng)sin∠BOA=
35

求:(1)點(diǎn)B的坐標(biāo);(2)cos∠BAO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大豐市一模)如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)y=
mx
(x>0,m是常數(shù))
的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點(diǎn)A作x軸垂線,垂足為C,過點(diǎn)B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點(diǎn)B的坐標(biāo);
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點(diǎn)A作x軸垂線,垂足為C,過點(diǎn)B作y軸垂線,垂足為D,連結(jié)AD、DC、CB.

1.若△ABD的面積為4,求點(diǎn)B的坐標(biāo)

2.求證:DC∥AB

3.四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD 為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點(diǎn)A作x軸垂線,垂足為C,過點(diǎn)B作y軸垂線,垂足為D,連結(jié)AD、DC、CB.

【小題1】若△ABD的面積為4,求點(diǎn)B的坐標(biāo)
【小題2】求證:DC∥AB
【小題3】四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD 為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省鹽城市大豐市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點(diǎn)A作x軸垂線,垂足為C,過點(diǎn)B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點(diǎn)B的坐標(biāo);
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD為菱形時(shí),直線AB的函數(shù)解析式;如果不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案