(2012•鎮(zhèn)江模擬)如圖,矩形ABCD中,AB=6cm,AD=3cm,CE=2cm,動(dòng)點(diǎn)P從A出發(fā)以每秒2cm的速度向終點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q也從點(diǎn)A出發(fā)以每秒1cm的速度向終點(diǎn)E運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.解答下列問(wèn)題:
(1)當(dāng)0<t≤3時(shí),以A、P、Q為頂點(diǎn)的三角形能與△ADE相似嗎?(不必說(shuō)理由)
(2)連接DQ,試求當(dāng)t為何值時(shí)?△ADQ為等腰三角形.
(3)求t為何值時(shí)?直線PQ平分矩形ABCD的面積.
分析:(1)不能相似,因?yàn)橄嗨茣r(shí),只能∠AQP=90°,∠QPA=30°,而△ADE中的銳角不能為30°;
(2)分為三種情況:①當(dāng)AD=AQ=3cm時(shí),②當(dāng)DA=DQ時(shí),過(guò)D作DM⊥AE于M,③當(dāng)QA=QD時(shí),求出AQ長(zhǎng)即可;
(3)連接AC,取AC中點(diǎn)O(即AO=OC),當(dāng)直線PQ過(guò)O時(shí),直線PQ平分矩形ABCD的面積,根據(jù)△ROC≌△POA,求出CR=AP=2t,得出RE=2t-2,EQ=5-t,根據(jù)△RQE∽△PQA得出
RE
AP
=
EQ
AQ
,代入求出即可.
解答:解:(1)不能相似;

(2)∵四邊形ABCD是矩形,
∴DC=AB=6cm,∠ADC=90°,

分為三種情況:①當(dāng)AD=AQ=3cm時(shí),此時(shí)t=3;  
②當(dāng)DA=DQ時(shí),過(guò)D作DM⊥AE于M,
在Rt△ADE中,AD=3,DE=DC-CE=6cm-2cm=4cm,由勾股定理得:AE=5cm,
由三角形的面積公式得:S△ADE=
1
2
×AD×DE=
1
2
AE×DM,
∴DM=
12
5
cm,
在Rt△ADM中,由勾股定理得:AM=
32-(
12
5
)2
=
9
5
(cm),
∵DM⊥AQ,AD=DQ,
∴AQ=2AM=
18
5
cm(三線合一定理),
即t=
18
5
;   
③當(dāng)QA=QD時(shí),
過(guò)Q作QN⊥AD于N,
則AN=ND=
3
2

∵∠ADC=∠ANQ=90°
∴QN∥DC,
∵DN=AN,
∴EQ=AQ=
1
2
AE=
1
2
×5cm=
5
2
cm,
即t=
5
2

綜合上述,當(dāng)t為3秒或
18
5
秒或
5
2
秒時(shí),△ADQ是等腰三角形.


(3)連接AC,取AC中點(diǎn)O(即AO=OC),當(dāng)直線PQ過(guò)O時(shí),直線PQ平分矩形ABCD的面積,
∵四邊形ABCD是矩形,
∴DC∥AB,
∴∠OCR=∠OAP,
∵在△ROC和△POA中,
∠RCO=∠PAO
OC=OA
∠ROC=∠POA

∴△ROC≌△POA(ASA),
∴CR=AP=2t,
∵CE=2,
∴RE=2t-2,EQ=5-t,
∵DC∥AB,
∴△RQE∽△PQA,
RE
AP
=
EQ
AQ
,
2t-2
2t
=
5-t
t

解得:t1=3,t2=0(舍去).
即t=3秒時(shí),直線PQ平分矩形ABCD的面積.
點(diǎn)評(píng):本題考查了相似三角形的性質(zhì)和判定,矩形的性質(zhì),全等三角形的性質(zhì)和判定,含30度角的直角三角形性質(zhì),平行線的性質(zhì)等知識(shí)點(diǎn)的綜合運(yùn)用,用了分類討論思想和方程思想,難度偏大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鎮(zhèn)江模擬)在8×8的正方形網(wǎng)格中建立如圖所示坐標(biāo)系,已知A(2,4),B(4,2).
(1)在第一象限內(nèi)標(biāo)出一個(gè)格點(diǎn)C,使得點(diǎn)C與線段AB組成一個(gè)以AB為底,且腰長(zhǎng)為無(wú)理數(shù)的等腰三角形.
(2)填空:C點(diǎn)的坐標(biāo)是
(1,1)
(1,1)
,△ABC的面積是
4
4
;
(3)請(qǐng)?zhí)骄浚涸趚軸上是否存在這樣的點(diǎn)P,使以點(diǎn)A、B、P為頂點(diǎn)的三角形的面積等于△ABC的面積?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo)(可以在網(wǎng)格外);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鎮(zhèn)江模擬)如圖,某人在山坡坡腳A處測(cè)得電視塔尖點(diǎn)C的仰角為60°,沿山坡向上走到P處再測(cè)得點(diǎn)C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點(diǎn)P的鉛直高度.(測(cè)傾器高度忽略不計(jì),結(jié)果保留根號(hào)形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鎮(zhèn)江模擬)已知∠A的補(bǔ)角是120°,則tanA=
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鎮(zhèn)江模擬)2011年年末我國(guó)總?cè)丝谝呀?jīng)達(dá)到134735萬(wàn)人,這個(gè)數(shù)字用科學(xué)記數(shù)法可以表示為
1.35×109
1.35×109
人(保留3位有效數(shù)字).

查看答案和解析>>

同步練習(xí)冊(cè)答案