(2003•廈門)閱讀下面的例題:
解方程:x2-|x|-2=0
解:(1)當(dāng)x≥0時(shí),原方程化為x2-x-2=0,解得:x1=2,x2=-1(不合題意,舍去).
(2)當(dāng)x<0時(shí),原方程化為x2+x-2=0,解得:x1=1(不合題意,舍去),x2=-2
∴原方程的根是x1=2,x2=-2.
請參照例題解方程x2-|x-3|-3=0,則此方程的根是______.
【答案】分析:當(dāng)絕對值內(nèi)的數(shù)不小于0時(shí),可直接去掉絕對值,而當(dāng)絕對值內(nèi)的數(shù)為負(fù)數(shù)時(shí),去絕對值時(shí),絕對值內(nèi)的數(shù)要變?yōu)樵瓉淼南喾磾?shù).本題要求參照例題解題,要先對x的值進(jìn)行討論,再去除絕對值將原式化簡.
解答:解:(1)當(dāng)x≥3時(shí),原方程化為x2-(x-3)-3=0,
即x2-x=0
解得x1=0(不合題意,舍去),x2=1(不合題意,舍去);
(2)當(dāng)x<3時(shí),原方程化為x2+x-3-3=0
即x2+x-6=0,
解得x1=-3,x2=2.
所以原方程的根是x1=-3,x2=2.
點(diǎn)評:本題考查了絕對值的性質(zhì)和一元二次方程的解法,另外去絕對值時(shí)要注意符號的改變.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的特點(diǎn)靈活選用合適的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、閱讀下題并填空:
已知:△ABC,∠A、∠B、∠C之和為多少?為什么?
解:∠A+∠B+∠C=180°
理由:作∠ACD=∠A,并延長BC到E
∵∠1=∠A(已作)
∴AB∥CD(
內(nèi)錯(cuò)角相等,兩直線平行

∴∠B=
∠2
兩直線平行,同位角相等

而∠ACB+∠1+∠2=180°
∴∠ACB+
∠A
+
∠B
=180°(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:選擇題

(2003•廈門)已知以(-1,0)為圓心,1為半徑的⊙M和拋物線y=x2+6x+11,現(xiàn)有兩個(gè)命題:
(1)拋物線y=x2+6x+11與⊙M沒有交點(diǎn);
(2)將拋物線y=x2+6x+11向下平移3個(gè)單位,則此拋物線與⊙M相交.
則以下結(jié)論正確的是( )
A.只有命題(1)正確
B.只有命題(2)正確
C.命題(1),(2)都正確
D.命題(1),(2)都不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年福建省廈門市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•廈門)閱讀下面的例題:
解方程:x2-|x|-2=0
解:(1)當(dāng)x≥0時(shí),原方程化為x2-x-2=0,解得:x1=2,x2=-1(不合題意,舍去).
(2)當(dāng)x<0時(shí),原方程化為x2+x-2=0,解得:x1=1(不合題意,舍去),x2=-2
∴原方程的根是x1=2,x2=-2.
請參照例題解方程x2-|x-3|-3=0,則此方程的根是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年福建省廈門市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•廈門)已知以(-1,0)為圓心,1為半徑的⊙M和拋物線y=x2+6x+11,現(xiàn)有兩個(gè)命題:
(1)拋物線y=x2+6x+11與⊙M沒有交點(diǎn);
(2)將拋物線y=x2+6x+11向下平移3個(gè)單位,則此拋物線與⊙M相交.
則以下結(jié)論正確的是( )
A.只有命題(1)正確
B.只有命題(2)正確
C.命題(1),(2)都正確
D.命題(1),(2)都不正確

查看答案和解析>>

同步練習(xí)冊答案